首页 | 本学科首页   官方微博 | 高级检索  
     


Nonparametric estimation of multivariate extreme-value copulas
Authors:Gordon Gudendorf  Johan Segers
Affiliation:Institut de statistique, biostatistique et sciences actuarielles, Voie du Roman Pays 20, B-1348 Louvain-la-Neuve, Belgium
Abstract:
Extreme-value copulas arise in the asymptotic theory for componentwise maxima of independent random samples. An extreme-value copula is determined by its Pickands dependence function, which is a function on the unit simplex subject to certain shape constraints that arise from an integral transform of an underlying measure called spectral measure. Multivariate extensions are provided of certain rank-based nonparametric estimators of the Pickands dependence function. The shape constraint that the estimator should itself be a Pickands dependence function is enforced by replacing an initial estimator by its best least-squares approximation in the set of Pickands dependence functions having a discrete spectral measure supported on a sufficiently fine grid. Weak convergence of the standardized estimators is demonstrated and the finite-sample performance of the estimators is investigated by means of a simulation experiment.
Keywords:Empirical copula   Extreme-value copula   Pickands dependence function   Simplex   Shape constraints   Spectral measure   Weak convergence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号