首页 | 本学科首页   官方微博 | 高级检索  
     


A novel approach to subgraph selection with multiple weights on arcs
Authors:Raayatpanah  Mohammad Ali  Khodayifar   Salman  Weise   Thomas  Pardalos   Panos
Affiliation:1.Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran
;2.Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran
;3.Institute of Applied Optimization, School of Artificial Intelligence and Big Data, Hefei University, Jinxiu Dadao 99, Hefei, 230601, Anhui, China
;4.Center for Applied Optimization, Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA
;5.LATNA, Higher School of Economics, Irkutsk, Russia
;
Abstract:

In this paper, an extension of the minimum cost flow problem is considered in which multiple incommensurate weights are associated with each arc. In the minimum cost flow problem, flow is sent over the arcs of a graph from source nodes to sink nodes. The goal is to select a subgraph with minimum associated costs for routing the flow. The problem is tractable when a single weight is given on each arc. However, in many real-world applications, several weights are needed to describe the features of arcs, including transit cost, arrival time, delay, profit, security, reliability, deterioration, and safety. In this case, finding an optimal solution becomes difficult. We propose a heuristic algorithm for this purpose. First, we compute the relative efficiency of the arcs by using data envelopment analysis techniques. We then determine a subgraph with efficient arcs using a linear programming model, where the objective function is based on the relative efficiency of the arcs. The flow obtained satisfies the arc capacity constraints and the integrality property. Our proposed algorithm has polynomial runtime and is evaluated in rigorous experiments.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号