Kernel partial correlation: a novel approach to capturing conditional independence in graphical models for noisy data |
| |
Authors: | Jihwan Oh Faye Zheng R. W. Doerge |
| |
Affiliation: | Department of Statistics, Purdue University, West Lafayette, IN, USA |
| |
Abstract: | Graphical models capture the conditional independence structure among random variables via existence of edges among vertices. One way of inferring a graph is to identify zero partial correlation coefficients, which is an effective way of finding conditional independence under a multivariate Gaussian setting. For more general settings, we propose kernel partial correlation which extends partial correlation with a combination of two kernel methods. First, a nonparametric function estimation is employed to remove effects from other variables, and then the dependence between remaining random components is assessed through a nonparametric association measure. The proposed approach is not only flexible but also robust under high levels of noise owing to the robustness of the nonparametric approaches. |
| |
Keywords: | Conditional independence graphical model Hilbert–Schmidt independence criterion partial correlation coefficient reproducing kernel Hilbert space support vector regression |
|
|