首页 | 本学科首页   官方微博 | 高级检索  
     


A New Estimator for Cox Proportional Hazard Regression Model in Presence of Collinearity
Abstract:We propose a new approach to estimate the parameters of the Cox proportional hazards model in the presence of collinearity. Generally, a maximum partial likelihood estimator is used to estimate parameters for the Cox proportional hazards model. However, the maximum partial likelihood estimators can be seriously affected by the presence of collinearity since the parameter estimates result in large variances.

In this study, we develop a Liu-type estimator for Cox proportional hazards model parameters and compare it with a ridge regression estimator based on the scalar mean squared error (MSE). Finally, we evaluate its performance through a simulation study.
Keywords:Collinearity  Cox proportional hazards models  Liu-type estimator
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号