Abstract: | To analyze bivariate time‐to‐event data from matched or naturally paired study designs, researchers frequently use a random effect called frailty to model the dependence between within‐pair response measurements. The authors propose a computational framework for fitting dependent bivariate time‐to‐event data that combines frailty distributions and accelerated life regression models. In this framework users can choose from several parametric options for frailties, as well as the conditional distributions for within‐pair responses. The authors illustrate the flexibility that their framework represents using paired data from a study of laser photocoagulation therapy for retinopathy in diabetic patients. |