Institut de Statistique, Biostatistique et Sciences Actuarielles (ISBA)Université catholique de Louvain
Abstract:
Parametrically guided non‐parametric regression is an appealing method that can reduce the bias of a non‐parametric regression function estimator without increasing the variance. In this paper, we adapt this method to the censored data case using an unbiased transformation of the data and a local linear fit. The asymptotic properties of the proposed estimator are established, and its performance is evaluated via finite sample simulations.