首页 | 本学科首页   官方微博 | 高级检索  
     

基于滑动窗口的自适应网页预测模型
引用本文:班志杰,古志民,金瑜. 基于滑动窗口的自适应网页预测模型[J]. 电子科技大学学报(社会科学版), 2009, 0(2)
作者姓名:班志杰  古志民  金瑜
作者单位:北京理工大学计算机科学技术学院;内蒙古大学电子信息工程学院;
基金项目:教育部-英特尔信息技术专项科研基金(MOE-INTEL-08-10)
摘    要:PPM模型广泛应用于Web预取技术,但大多数的PPM模型不具有自适应性,不能反映用户浏览模式的改变。通过对标准PPM模型的扩展,提出基于滑动窗口的自适应网页预测模型。该模型仅保留处于滑动窗口之内的最近访问序列,从而反映用户兴趣的变化,同时利用非压缩后缀树增量式添加新的用户请求和删除过时的浏览信息,以提高更新速度。实验表明,该模型能更准确地描述用户在Web上的浏览特征,在预取性能上明显地优于以往的模型。

关 键 词:增量式更新  非压缩后缀树  PPM  Web预取  

Sliding Window-Based Adaptive Web Prediction Modeling
BAN Zhi-jie,,GU Zhi-min,, JIN Yu. Sliding Window-Based Adaptive Web Prediction Modeling[J]. Journal of University of Electronic Science and Technology of China(Social Sciences Edition), 2009, 0(2)
Authors:BAN Zhi-jie    GU Zhi-min     JIN Yu
Affiliation:1. School of Computer Science and Technology;Beijing Institute of Technology Haidian Beijing 100081;2. College of Electronic Information Engineering;Inner Mongolia University Huhhot 010021
Abstract:Prediction by partial match (PPM) models are commonly used for web prefetching. But most of existing models are not adaptive and can not represent the change of user browsing behaviors. By extending the standard PPM model, we present an adaptive Web prediction model based on sliding window. The model only keeps the most recent requests by a sliding window to indicate user interest changing. In order to improve the updating speed, it makes use of non-compact suffix tree to incrementally insert the new user r...
Keywords:incremental update  non-compact suffix tree  PPM  Web prefetching  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号