首页 | 本学科首页   官方微博 | 高级检索  
     


Shrinkage and penalized estimators in weighted least absolute deviations regression models
Authors:M. Norouzirad  M. Arashi
Affiliation:Department of Statistics, Shahrood University of Technology, Shahrood, Iran
Abstract:In this paper, we consider the estimation problem of the weighted least absolute deviation (WLAD) regression parameter vector when there are some outliers or heavy-tailed errors in the response and the leverage points in the predictors. We propose the pretest and James–Stein shrinkage WLAD estimators when some of the parameters may be subject to certain restrictions. We derive the asymptotic risk of the pretest and shrinkage WLAD estimators and show that if the shrinkage dimension exceeds two, the asymptotic risk of the shrinkage WLAD estimator is strictly less than the unrestricted WLAD estimator. On the other hand, the risk of the pretest WLAD estimator depends on the validity of the restrictions on the parameters. Furthermore, we study the WLAD absolute shrinkage and selection operator (WLAD-LASSO) and compare its relative performance with the pretest and shrinkage WLAD estimators. A simulation study is conducted to evaluate the performance of the proposed estimators relative to that of the unrestricted WLAD estimator. A real-life data example using body fat study is used to illustrate the performance of the suggested estimators.
Keywords:Asymptotic distributional bias  asymptotic distributional risk  Monte Carlo simulation  outliers  pretest  shrinkage  WLAD-LASSO
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号