首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian estimation of sensitivity level and population proportion of a sensitive characteristic in a binary optional unrelated question RRT model
Authors:Samridhi Mehta
Affiliation:Department of Mathematics, Hindu College, University of Delhi, Delhi, India
Abstract:Sihm et al. (2016 Sihm, J. S., A. Chhabra, and S. N. Gupta. 2016. An optional unrelated question RRT model. Involve: A Journal of Mathematics 9 (2):195209.[Crossref] [Google Scholar]) proposed an unrelated question binary optional randomized response technique (RRT) model for estimating the proportion of population that possess a sensitive characteristic and the sensitivity level of the question. In our work, decision theoretic approach has been followed to obtain Bayes estimates of the two parameters along with their corresponding minimal Bayes posterior expected losses (BPEL) using beta prior and squared error loss function (SELF). Relative losses are also examined to compare the performances of the Bayes estimates with those of the classical estimates obtained by Sihm et al. (2016 Sihm, J. S., A. Chhabra, and S. N. Gupta. 2016. An optional unrelated question RRT model. Involve: A Journal of Mathematics 9 (2):195209.[Crossref] [Google Scholar]). The results obtained are illustrated with the help of real survey data using non informative prior.
Keywords:Binary optional unrelated question RRT model  Bayesian estimation  Beta prior  Squared error loss function  Bayes posterior expected loss  Relative loss.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号