首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of non-parametric regression for dasometric measures
Authors:E. Ayuga T  llez   A.J. Martí  n Fern  ndez  C. Gonz  lez Garcí  a  E. Martí  nez Falero
Affiliation:E. Ayuga Té,llez ,A.J. Martí,n Ferná,ndez,C. Gonzá,lez Garcí,a,E. Martí,nez Falero
Abstract:The aim of this paper is to describe a simulation procedure to compare parametric regression against a non-parametric regression method, for different functions and sets of information. The proposed methodology improves lack of fit at the edges of the regression curves, and an acceptable result is obtained for the no-parametric estimation in all studied cases. Larger differences appear at the edges of the estimation. The results are applied to the study of dasometric variables, which do not fulfil the normality hypothesis needed for parametric estimation. The kernel regression shows the relationship between the studied variables, which would not be detected with more rigid parametric models.
Keywords:Regression kernel  edge effect  simulation  comparison  dasometric variables
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号