首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of Conditional Ranks and Tests of Exogeneity in Nonparametric Nonseparable Models
Authors:Frédérique Fève  Jean-Pierre Florens  Ingrid Van Keilegom
Affiliation:1. Toulouse School of Economics, Université Toulouse Capitole, Toulouse, France (frederique.feve@tse-fr.eu;2. jean-pierre.florens@tse-fr.eu);3. Institute of Statistics, Biostatistics, and Actuarial Sciences, Université Catholique de Louvain, Voie du Roman Pays 20 B 1348, Louvain-la-Neuve, Belgium (ingrid.vankeilegom@uclouvain.be)
Abstract:
Consider a nonparametric nonseparable regression model Y = ?(Z, U), where ?(Z, U) is strictly increasing in U and UU[0, 1]. We suppose that there exists an instrument W that is independent of U. The observable random variables are Y, Z, and W, all one-dimensional. We construct test statistics for the hypothesis that Z is exogenous, that is, that U is independent of Z. The test statistics are based on the observation that Z is exogenous if and only if V = FY|Z(Y|Z) is independent of W, and hence they do not require the estimation of the function ?. The asymptotic properties of the proposed tests are proved, and a bootstrap approximation of the critical values of the tests is shown to be consistent and to work for finite samples via simulations. An empirical example using the U.K. Family Expenditure Survey is also given. As a byproduct of our results we obtain the asymptotic properties of a kernel estimator of the distribution of V, which equals U when Z is exogenous. We show that this estimator converges to the uniform distribution at faster rate than the parametric n? 1/2-rate.
Keywords:Endogeneity  Instrumental variable  Nonparametric regression  Nonseparability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号