Abstract: | ABSTRACT Classification of data consisting of both categorical and continuous variables between two groups is often handled by the sample location linear discriminant function confined to each of the locations specified by the observed values of the categorical variables. Homoscedasticity of across-location conditional dispersion matrices of the continuous variables is often assumed. Quite often, interactions between continuous and categorical variables cause across-location heteroscedasticity. In this article, we examine the effect of heterogeneous across-location conditional dispersion matrices on the overall expected and actual error rates associated with the sample location linear discriminant function. Performance of the sample location linear discriminant function is evaluated against the results for the restrictive classifier adjusted for across-location heteroscedasticity. Conclusions based on a Monte Carlo study are reported. |