Abstract: | Let { X n ,n≥1} be a sequence of iid. Gaussian random vectors in R d , d≥2, with nonsingular distribution function F. In this paper the asymptotics for the sequence of integrals I F,n (G n )?n∫ R d G n n?1( X ) dF( X ) is considered with G n some distribution function on R d . In the case G n =F the integral I F,n (F)/n is the probability that a record occurs in X 1,…, X n at index n. [1] Gnedin, A.V. 1998. Records from a Multivariate Normal Sample. Statist. Probab. Lett., 39: 11–15. [Crossref], [Web of Science ®] , [Google Scholar] obtained lower and upper asymptotic bounds for this case, whereas [2] Ledford, W.A. and Twan, A.J. 1998. On the Tail Concomitant Behaviour for Extremes. Adv. Appl. Probab., 30: 197–215. [Crossref], [Web of Science ®] , [Google Scholar] showed the rate of convergence if d=2. In this paper we derive the exact rate of convergence of I F,n (G n ) for d≥2 under some restrictions on the distribution function G n . Some related results for multivariate Gaussian tails are discussed also. |