首页 | 本学科首页   官方微博 | 高级检索  
     


Multiple Linear Regression Model Under Nonnormality
Abstract:Abstract

We consider multiple linear regression models under nonnormality. We derive modified maximum likelihood estimators (MMLEs) of the parameters and show that they are efficient and robust. We show that the least squares esimators are considerably less efficient. We compare the efficiencies of the MMLEs and the M estimators for symmetric distributions and show that, for plausible alternatives to an assumed distribution, the former are more efficient. We provide real-life examples.
Keywords:Multiple linear regression  Modified likelihood  Robustness  Outliers  M estimators  Least squares  Nonnormality  Hypothesis testing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号