首页 | 本学科首页   官方微博 | 高级检索  
     


Simple heterogeneity variance estimation for meta-analysis
Authors:Kurex Sidik   Jeffrey N. Jonkman
Affiliation:Wyeth Research, Princeton, USA; Mississippi State University, Mississippi State, USA
Abstract:Summary.  A simple method of estimating the heterogeneity variance in a random-effects model for meta-analysis is proposed. The estimator that is presented is simple and easy to calculate and has improved bias compared with the most common estimator used in random-effects meta-analysis, particularly when the heterogeneity variance is moderate to large. In addition, it always yields a non-negative estimate of the heterogeneity variance, unlike some existing estimators. We find that random-effects inference about the overall effect based on this heterogeneity variance estimator is more reliable than inference using the common estimator, in terms of coverage probability for an interval estimate.
Keywords:Across-study variance    Confidence intervals    Variance estimation    Weighted residual sum of squares
正在获取引用信息,请稍候...
相似文献(共20条):
[1]、R. A. Rigby,D. M. Stasinopoulos.A semi-parametric additive model for variance heterogeneity[J].Statistics and Computing,1996,6(1):57-65.
[2]、Jun Shao,Xiquan Shi.Half-sample variance estimation[J].统计学通讯:理论与方法,2013,42(11):4197-4210.
[3]、R. R. Sitter,J. N. K. Rao.Imputation for missing values and corresponding variance estimation[J].Revue canadienne de statistique,1997,25(1):61-73.
[4]、Yoshikazu Ojima.Generalized staggered nested designs for variance components estimation[J].Journal of applied statistics,2000,27(5):541-553.
[5]、On splines approximation for sliced average variance estimation[J].Journal of statistical planning and inference
[6]、Milan Merkle.Biased estimation of a variance[J].Statistical Methods and Applications,1996,5(3):323-334.
[7]、S. S. Wulff.Minimum variance unbiased invariant estimation of variance components under normality[J].Statistics,2013,47(1):53-65.
[8]、Ashish Kumar,P.C. Consul.Minimum variance unbiased estimation for modified power series distribution[J].统计学通讯:理论与方法,2013,42(12):1261-1275.
[9]、Ashok Sahai.Improved variance bounds for unbiased estimation in inverse sampling[J].Journal of statistical planning and inference,1980,4(3):213-216.
[10]、John H., Herbert,Phillip S., Kott.Robust variance estimation in linear regression[J].Journal of applied statistics,1988,15(3):341-345.
[11]、M. C. Jones.Simple boundary correction for kernel density estimation[J].Statistics and Computing,1993,3(3):135-146.
[12]、Shiqing Ling.Self-weighted least absolute deviation estimation for infinite variance autoregressive models[J].Journal of the Royal Statistical Society. Series B, Statistical methodology,2005,67(3):381-393.
[13]、Conditional variance estimation in heteroscedastic regression models[J].Journal of statistical planning and inference
[14]、Raul P. Mentz,Pedro A. Morettin,Clélia M.C. Toloi.Residual variance estimation in moving average models[J].统计学通讯:理论与方法,2013,42(8):1905-1923.
[15]、Siddhartha Chib,Edward Greenberg.On conditional variance estimation in nonparametric regression[J].Statistics and Computing,2013,23(2):261-270.
[16]、Second-order variance estimation in poststratified two-stage sampling[J].Journal of statistical planning and inference
[17]、B. N. Pandey.On shrinkage estimation of normal population variance[J].统计学通讯:理论与方法,2013,42(4):359-365.
[18]、F. Turkheimer,K. Pettigrew,L. Sokoloff,K. Schmidt.A minimum variance adaptive technique for parameter estimation and hypothesis testing[J].统计学通讯:模拟与计算,2013,42(4):931-956.
[19]、Error variance estimation via least squares for small sample nonparametric regression[J].Journal of statistical planning and inference
[20]、F. Jay Breidt.Improved variance estimation for balanced samples drawn via the cube method[J].Journal of statistical planning and inference,2011,141(1):479-487.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号