Abstract: | ![]() Let X1 X2 … XN be independent normal p-vectors with common mean vector $$ = ($$) and common nonsingular covariance matrix $$ = Diag ($sGi) [(1–p) I + pE] Diag ($sGi), $sGi> 0, i = 1… p, 1>p>=1/p–1. Write rij = sample correlation between the i th and the j th variable i j = 1,… p. It has been proved that for testing the hypothesis H0 : p = 0 against the alternative H1 : p>0 where $$ and $sG1,…, $sGp are unknown, the test which rejects H0 for large value of $$ rij is locally best invariant for every $aL: 0 > $aL > 1 and locally minimax as p $$ 0 in the sense of Giri and Kiefer, 1964, for every $aL: 0 > $aL $$ $aL0 > 1 where$aL0 = Pp=0 $$. |