首页 | 本学科首页   官方微博 | 高级检索  
     


Methods for estimating relative risk in studies of common binary outcomes
Authors:Alok Kumar Dwivedi  Indika Mallawaarachchi  Soyoung Lee  Patrick Tarwater
Affiliation:1. Division of Biostatistics &2. Epidemiology, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
Abstract:Studying the effect of exposure or intervention on a dichotomous outcome is very common in medical research. Logistic regression (LR) is often used to determine such association which provides odds ratio (OR). OR often overestimates the effect size for prevalent outcome data. In such situations, use of relative risk (RR) has been suggested. We propose modifications in Zhang and Yu and Diaz-Quijano methods. These methods were compared with stratified Mantel Haenszel method, LR, log binomial regression (LBR), Zhang and Yu method, Poisson/Cox regression, modified Poisson/Cox regression, marginal probability method, COPY method, inverse probability of treatment weighted LBR, and Diaz-Quijano method. Our proposed modified Diaz-Quijano (MDQ) method provides RR and its confidence interval similar to those estimated by modified Poisson/Cox and LBRs. The proposed modifications in Zhang and Yu method provides better estimate of RR and its standard error as compared to Zhang and Yu method in a variety of situations with prevalent outcome. The MDQ method can be used easily to estimate the RR and its confidence interval in the studies which require reporting of RRs. Regression models which directly provide the estimate of RR without convergence problems such as the MDQ method and modified Poisson/Cox regression should be preferred.
Keywords:logistic regression  modified Diaz-Quijano method  modified Zhang and Yu method  relative risk  odds ratio
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号