首页 | 本学科首页   官方微博 | 高级检索  
     


Hierarchical Bayesian modeling of marked non-homogeneous Poisson processes with finite mixtures and inclusion of covariate information
Authors:Athanasios Christou Micheas
Affiliation:Department of Statistics, University of Missouri, Columbia, MO 65211, USA
Abstract:
We investigate marked non-homogeneous Poisson processes using finite mixtures of bivariate normal components to model the spatial intensity function. We employ a Bayesian hierarchical framework for estimation of the parameters in the model, and propose an approach for including covariate information in this context. The methodology is exemplified through an application involving modeling of and inference for tornado occurrences.
Keywords:birth–death Markov chain Monte Carlo  data augmentation  marked point processes  mixture models  non-homogeneous Poisson process
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号