首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dose‐escalation strategies which use subgroup information
Authors:Amy Cotterill  Thomas Jaki
Institution:1. Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK;2. Medical and Pharmaceutical Statistics Research Unit, Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
Abstract:Dose‐escalation trials commonly assume a homogeneous trial population to identify a single recommended dose of the experimental treatment for use in future trials. Wrongly assuming a homogeneous population can lead to a diluted treatment effect. Equally, exclusion of a subgroup that could in fact benefit from the treatment can cause a beneficial treatment effect to be missed. Accounting for a potential subgroup effect (ie, difference in reaction to the treatment between subgroups) in dose‐escalation can increase the chance of finding the treatment to be efficacious in a larger patient population. A standard Bayesian model‐based method of dose‐escalation is extended to account for a subgroup effect by including covariates for subgroup membership in the dose‐toxicity model. A stratified design performs well but uses available data inefficiently and makes no inferences concerning presence of a subgroup effect. A hypothesis test could potentially rectify this problem but the small sample sizes result in a low‐powered test. As an alternative, the use of spike and slab priors for variable selection is proposed. This method continually assesses the presence of a subgroup effect, enabling efficient use of the available trial data throughout escalation and in identifying the recommended dose(s). A simulation study, based on real trial data, was conducted and this design was found to be both promising and feasible.
Keywords:dose‐escalation  subgroup effect  Bayesian model‐based method  spike and slab
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号