Abstract: | The authors consider a novel class of nonlinear time series models based on local mixtures of regressions of exponential family models, where the covariates include functions of lags of the dependent variable. They give conditions to guarantee consistency of the maximum likelihood estimator for correctly specified models, with stationary and nonstationary predictors. They show that consistency of the maximum likelihood estimator still holds under model misspecification. They also provide probabilistic results for the proposed model when the vector of predictors contains only lags of transformations of the modeled time series. They illustrate the consistency of the maximum likelihood estimator and the probabilistic properties via Monte Carlo simulations. Finally, they present an application using real data. |