首页 | 本学科首页   官方微博 | 高级检索  
     


Empirical Likelihood Confidence Intervals for Response Mean with Data Missing at Random
Authors:LIUGEN XUE
Affiliation:College of Applied Sciences, Beijing University of Technology
Abstract:Abstract.  A kernel regression imputation method for missing response data is developed. A class of bias-corrected empirical log-likelihood ratios for the response mean is defined. It is shown that any member of our class of ratios is asymptotically chi-squared, and the corresponding empirical likelihood confidence interval for the response mean is constructed. Our ratios share some of the desired features of the existing methods: they are self-scale invariant and no plug-in estimators for the adjustment factor and asymptotic variance are needed; when estimating the non-parametric function in the model, undersmoothing to ensure root- n consistency of the estimator for the parameter is avoided. Since the range of bandwidths contains the optimal bandwidth for estimating the regression function, the existing data-driven algorithm is valid for selecting an optimal bandwidth. We also study the normal approximation-based method. A simulation study is undertaken to compare the empirical likelihood with the normal approximation method in terms of coverage accuracies and average lengths of confidence intervals.
Keywords:bandwidth    confidence interval    empirical likelihood    kernel regression imputation method    missing at random    response mean
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号