首页 | 本学科首页   官方微博 | 高级检索  
     


On Optimality of Bayesian Wavelet Estimators
Authors:Felix Abramovich  Umberto Amato   Claudia Angelini
Affiliation:Tel Aviv University;and Istituto per le Applicazioni del Calcolo
Abstract:
Abstract.  We investigate the asymptotic optimality of several Bayesian wavelet estimators, namely, posterior mean, posterior median and Bayes Factor, where the prior imposed on wavelet coefficients is a mixture of a mass function at zero and a Gaussian density. We show that in terms of the mean squared error, for the properly chosen hyperparameters of the prior, all the three resulting Bayesian wavelet estimators achieve optimal minimax rates within any prescribed Besov space     for p  ≥ 2. For 1 ≤  p  < 2, the Bayes Factor is still optimal for (2 s +2)/(2 s +1) ≤  p  < 2 and always outperforms the posterior mean and the posterior median that can achieve only the best possible rates for linear estimators in this case.
Keywords:Bayes Factor    Bayes model    Besov spaces    minimax estimation    non-linear estimation    non-parametric regression    posterior mean    posterior median    wavelets
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号