首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Power and stability comparisons of multiple testing procedures with false discovery rate control
Abstract:High-throughput data analyses are widely used for examining differential gene expression, identifying single nucleotide polymorphisms, and detecting methylation loci. False discovery rate (FDR) has been considered a proper type I error rate to control for discovery-based high-throughput data analysis. Various multiple testing procedures have been proposed to control the FDR. The power and stability properties of some commonly used multiple testing procedures have not been extensively investigated yet, however. Simulation studies were conducted to compare power and stability properties of five widely used multiple testing procedures at different proportions of true discoveries for various sample sizes for both independent and dependent test statistics. Storey's two linear step-up procedures showed the best performance among all tested procedures considering FDR control, power, and variance of true discoveries. Leukaemia and ovarian cancer microarray studies were used to illustrate the power and stability characteristics of these five multiple testing procedures with FDR control.
Keywords:multiple testing  false discovery rate  power  stability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号