工期不确定下的外包项目激励机制设计

夏远强, 董慧茹, 夏宇

夏远强, 董慧茹, 夏宇. 工期不确定下的外包项目激励机制设计[J]. 电子科技大学学报社科版, 2019, 21(2): 80-84. DOI: 10.14071/j.1008-8105(2017)-0005
引用本文: 夏远强, 董慧茹, 夏宇. 工期不确定下的外包项目激励机制设计[J]. 电子科技大学学报社科版, 2019, 21(2): 80-84. DOI: 10.14071/j.1008-8105(2017)-0005
XIA Yuan-qiang, DONF Hui-ru, XIA Yu. Incentive Contract Design in Outsourcing Project with Uncertain Completion Time[J]. Journal of University of Electronic Science and Technology of China(SOCIAL SCIENCES EDITION), 2019, 21(2): 80-84. DOI: 10.14071/j.1008-8105(2017)-0005
Citation: XIA Yuan-qiang, DONF Hui-ru, XIA Yu. Incentive Contract Design in Outsourcing Project with Uncertain Completion Time[J]. Journal of University of Electronic Science and Technology of China(SOCIAL SCIENCES EDITION), 2019, 21(2): 80-84. DOI: 10.14071/j.1008-8105(2017)-0005

工期不确定下的外包项目激励机制设计

详细信息
    作者简介:

    夏远强(1963– )男,博士,电子科技大学经济与管理学院教授

    董慧茹(1990– )女,电子科技大学经济与管理学院硕士研究生

    夏宇(1990– )男,上海财经大学国际工商管理学院博士研究生

  • 中图分类号: F274

Incentive Contract Design in Outsourcing Project with Uncertain Completion Time

  • 摘要: 对于科技研发等具有明显时间价值的项目以及水电站建设等大型项目而言,提前完工能够带来显著的经济效益,基于资源、进度和成本因素的考虑,外包成为此类项目的战略选择。当前对项目收益激励及工期优化问题的研究较多基于确定性工期或非合作视角,在实际施工中由于外生变量的影响工期往往不确定,因此分析工期不确定情况下,考虑参与各方的风险偏好,设计基于合作的激励机制对项目外包实践有重要的意义。基于此,从合作博弈的角度,分别制定了工期确定、工期不确定情况下的激励合同;通过模型对比,分析外界因素、承包商、分包商各自对激励机制设计的影响;并进一步提出基于收益最大化的联盟合作在工期确定时可以达到,在工期不确定时可以通过基于信任的Partnering项目管理模式达到。最后提出了对于外包项目激励机制设计的一些建议。
    Abstract: For projects with obvious time value, such as scientific research and development and large-scale projects like hydropower construction, early completion can bring significant economic benefits. Considering resources, schedule and cost, outsourcing has become a strategic choice for such projects. At present, the research on project income incentives and duration optimization is mostly based on deterministic duration or non-cooperative perspective. In actual construction, the duration is often uncertain due to the influence of exogenous variables. Therefore, in the uncertainty of the duration, considering the risk preferences of all parties involved, designing a cooperative incentive mechanism is of great significance to the project outsourcing practice. From the perspective of cooperative game, this article makes cooperative incentive contracts with certain and uncertain duration respectively, to enlarge the project output, so both contractor and subcontractor can earn more. Finally, it provides several meaningful suggestions for the outsourcing project incentive problem in practice through model analysis.
  • 项目外包实践中,提前完工可以给承包商带来正的边际收益,但会给分包商带来负的边际收益。在不考虑外生变量对工期的影响、工期确定的情况下,工期能够反应分包商的努力水平,承包商可据此来对分包商进行激励;但在考虑外生变量对工期的影响、工期不确定的情况下,工期是分包商努力的不完全信息,分包商可能产生道德风险问题,因此传统激励合同可能会失效。基于此提出承包商和分包商共享额外收益的激励机制,确保在工期确定和不确定的情况下激励机制同样有效,以充分、合理地激励分包商努力提前完工,使得双方收益达到最优。

    当前对外包项目的收益激励及工期优化问题的研究较多是基于确定性工期或非合作的视角,假设工期是资源驱动的,目前主要有两个方面的研究:(1)基于工期–费用模型的激励机制设计[1~4]。此类研究均没有考虑外生变量对工期的影响,例如汪应洛假设信息是完全的,对多标段项目进行激励,建立了工期–费用优化模型,用启发式遗传算法得出了最优工期、激励支付[2]。(2)规避道德风险的委托–代理激励模型。此类研究最早应用在组织设计及企业理论,旨在规避经理人的道德风险问题[5~6]。在收益激励及工期优化中的应用与组织设计类似,研究的多是非合作的激励机制,通过调节固定支付、激励支付来激励分包商努力,分包商在最优选择下得到的始终等于其保留收益[7~8]。有学者研究了基于合作的激励机制设计,但大多是基于业主的角度,只考虑总包商一方风险偏好的激励机制[9~10]。例如吴孝灵建立了施工效率可观测、施工效率不可观测情况下的业主–总包商工期激励模型,只考虑了总包商一方的风险偏好[10]。Yang设计了一个考虑内生变量对工期影响的激励合同,但没有考虑参与方的风险偏好[11]。因此对在工期不确定的情况下,考虑参与各方风险偏好的对基于合作的激励机制的研究还比较缺乏。

    合作博弈研究的是如何制定有约束力的协议来解决冲突的决策及均衡问题,合作博弈通常关注的是合作结果,但在进行收益分配时可能会产生非合作的竞争状态。基于两人合作博弈的收益分配问题,纳什在1951年提出可以用纳什讨价还价解来解决合作收益的分配问题。对于多重纳什讨价还价解的问题,谢林提出了焦点均衡解:各局中人有可能将注意力集中在多重均衡中的某一均衡上,从而大家实施这一策略[12]。当双方无法形成焦点时会出现一个焦点仲裁人,特殊一类的焦点仲裁人既充当焦点仲裁人,又是局中人。本文中的承包商即是两人合作问题中的焦点仲裁人。联盟合作是从整体的角度进行收益的优化及分配问题的研究,通常的解法有Shapley值、核解及其拓展解等[13~14]。基于这些解概念对收益及成本分配问题的研究均是基于项目施工结果,而非施工前的激励及工期优化,也没有考虑到外生变量对工期不确定性以及对激励机制的影响。

    本文基于收益激励及工期优化理论、合作博弈理论,分析工期产出不确定情况下的激励机制设计问题,为现实中由于各种因素需要提前完工,或提前完工可以带来额外收益的外包项目提供了可行的合作参考方案。

    本文假设:(1)项目完成时质量是合格的,承包商对于项目质量不合格的惩罚远大于对项目延期的惩罚,因此分包商不会因为赶工期而牺牲项目质量。(2)项目实施之前分包商能力已知,且分包商有能力按时或提前完工。(3)承包商和分包商均为风险规避。(4)项目提前完工带给承包商正的边际收益;不考虑工期提前给分包商带来的直接收益。

    This page contains the following errors:

    error on line 1 at column 9: Extra content at the end of the document

    Below is a rendering of the page up to the first error.

    p

    This page contains the following errors:

    error on line 1 at column 9: Extra content at the end of the document

    Below is a rendering of the page up to the first error.

    r

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    $ \begin{array}{l} u = f - \frac{1}{2}{\rho _1}{(1 - \beta )^2}{\sigma ^2}\\ \quad = {r_0} - \alpha + (1 - \beta )kga - \frac{1}{2}{\rho _0}{(1 - \beta )^2}{\sigma ^2} \end{array} $

    (1)

    This page contains the following errors:

    error on line 1 at column 9: Extra content at the end of the document

    Below is a rendering of the page up to the first error.

    c

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    $ \begin{array}{l} v = E\omega - \frac{1}{2}{\rho _1}{\beta ^2}{\sigma ^2}\\ \;\;\,= \alpha + \beta kga - {c_{_0}} - \frac{1}{2}b{a^2} - \frac{1}{2}{\rho _1}{\beta ^2}{\sigma ^2} \end{array} $

    (2)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    $ \left\{ \begin{array}{l} \max {r_{_0}} - \alpha + (1 - \beta )kga\\ (IC)\max \alpha + \beta kga - {c_{_0}} - \frac{1}{2}b{a^2} \end{array} \right. $

    (3)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    $ a = \frac{{\beta kg}}{b} $

    (4)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    $ \left\{ \begin{array}{l} \max {r_{_0}} - \alpha + (1 - \beta )kga - \frac{1}{2}{\rho _{_0}}{(1 - \beta )^2}{\sigma ^2}\\ (IC)\max \alpha + \beta kga - {c_{_0}} - \frac{1}{2}b{a^2} - \frac{1}{2}{\rho _1}{\beta ^2}{\sigma ^2} \end{array} \right. $

    (5)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 369: Extra content at the end of the document

    Below is a rendering of the page up to the first error.

    $\frac{{{∂} \beta ''}}{{{∂} {\rho _{_0}}}} > 0,\frac{{{∂} \beta ''}}{{{∂} {\sigma ^2}}} > 0$

    结论4. 无论是否考虑外生因素,激励强度和固定支付无关。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    结论6. 考虑外生变量对工期的影响时,承包商的最优选择是提供激励合同。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    由文献[12]知合作博弈的核解需满足个体理性、分配规则的有效性。

    1. 个体理性。即通过联盟,参与双方的收益均增大。

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    即得证。工期不确定情况下,同理可以证明双方可以通过联盟合作消除(或减少)双重边际。

    基于以上分析,双方激励机制决策过程如图1所示。

    图  1  外包项目激励机制决策过程

    上述激励机制是基于承包商的角度,而非全局最优,因而现实中可能会产生双重边际。在工期确定的情况下,可以通过联盟合作消除双重边际。在有外生变量对工期影响、工期产出不确定时,由于分包商努力水平不可观测,因此可能会产生道德风险问题,无法达到消除双重边际的目的。为了在产出不确定时实现收益的最大化,理论及实践研究提出了基于合作和信任的Partnering项目管理模式。Partnering模式是考虑了外生变量对工期的不确定性影响的联盟合作模式,参与方之间基于信任、共同的目标组成一个团队,进行资源、信息、利益、风险的共享。对于冲突的解决,相对于传统合作模式依赖于有约束力的协议,团体之间的合作更多的是依赖于合作团体的共同目标,以及彼此之间的信任等非正式协议。Partnering模式即是基于整体最优的联盟合作在实践中的应用,目前有学者进行研究表明Partnering模式是基于长期合作、互利共赢有效的项目管理模式[15~16]

    通过分析,对实践中提前完工可以带来额外收益的外包项目承包商,提出可以采取基于合作的激励机制的建议,以有效激励分包商提前完工,从而达到增加收益的目的。具体结论及合作建议如下:(1)无论产出是否确定,激励强度的制定应不受固定支付影响。(2)如果产出确定,承包商可以采取和分包商(团体)平分项目额外产出的激励机制。如果产出不确定,承包商提供的激励强度应加大,且此时的激励强度和承包商风险规避度、工期产出不确定性、分包商努力成本正相关,和项目边际额外产出、分包商能力负相关。(3)承包商应选择高能力水平的分包商。选择高能力水平的分包商不仅可以保证项目质量、工期,同时可以获得更多的项目额外收益。(4)工期确定时,双方可以进一步地采取联盟合作的方式,以最大化各自收益。工期不确定的情况下,为了最大化双方收益,承包商和分包商可以通过采取基于信任的Partnering项目管理模式,消除或减少双重边际。

    不足及展望:(1)没有考虑分包商的机会成本。本文没有考虑提前完工带给分包商的机会成本,如果考虑分包商的机会成本,承包商制定的激励机制可能更加到位。(2)只考虑了单一分包商或总包商。进一步地可以考虑对多分包商的激励机制设计,或分包商数量对激励机制影响的研究。(3)为了消除双重边际,使双方收益最大化,文章提出基于联盟合作的Partnering项目管理模式,但并没有做更深入的分析。目前此类模式在实践中也开始广泛使用,理论研究也越来越深入,后期可以进一步分析基于Partnering联盟合作模式具体的激励机制,以实现参与各方收益的最大化。

  • 图  1   外包项目激励机制决策过程

  • 汪嘉旻. 收益激励的优化与最优工期的选择[J]. 系统工程, 2000, 18(3): 5-11.
    汪应洛. 多合同的激励优化与最优工期确定[J]. 预测, 2005, 24(2): 60-63.
    兰定筠. 对代建合同工期成本激励系数的研究[J]. 土木工程学报, 2008, 41(6): 91-97.
    向寿生. 单分包合同下的承包商工期激励强度模型研究[J]. 统计与决策, 2013(6): 44-47.
    帕特里克•博尔顿, 马赛厄斯•德瓦特里庞. 合同理论[M]. 费方瑜, 译. 上海: 格致出版社, 2015: 231-260.
    张维迎. 博弈论与信息经济学[M]. 上海: 上海人民出版社. 2011: 245

    TANG C S. Incentive Contracts for Managing a Project with Uncertain Completion Time[J]. Product and Operation, 2015(12): 1945-1954.

    王榴. 基于委托代理模型的建筑工程激励合同机制研究[J]. 工程管理学报, 2014, 28(1): 99-105.

    BERENDS T C. Cost plus incentive fee contracting experienced structuring[J]. International Journal of Project Management, 2000, 18(3): 165-173.

    吴孝灵. 基于总包商施工效率的BOT项目工期激励合同研究[J]. 科技进步与对策, 2011, 28(13): 75-80.

    YANG Kai, ZHAO Rui-qing. Incentive contract design in project management with serial tasks and uncertain completion times[J]. Engineering Optimization, 2016(4): 629-651.

    施锡铨. 合作博弈引论[M]. 北京: 北京大学出版社. 2012.

    ESTÉVEZ-FERNÁNDEZ A. A game theoretical approach to sharing penalties and rewards in projects[J]. European Journal of Operational Research, 2012, 216: 647-657.

    CASTRO J. A project game for PERT networks[J]. Science Direct Operations Research Letters, 2007, 35: 791-798.

    陈菊红. 虚拟企业收益分配问题博弈研究[J]. 运筹与管理, 2002, 11(1): 11-17.

    MOHAMMAD S. How do contract types and incentives matter to project performance?[J]. International Journal of Project Management, 2016(34): 1071-1087.

  • 期刊类型引用(1)

    1. 岳朝龙,尚慧. 工程建设中基于质量的激励决策模型. 安徽工业大学学报(自然科学版). 2021(04): 467-471 . 百度学术

    其他类型引用(4)

图(1)
计量
  • 文章访问数:  10047
  • HTML全文浏览量:  3179
  • PDF下载量:  27
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-05-12
  • 网络出版日期:  2017-07-17
  • 刊出日期:  2019-03-31

目录

/

返回文章
返回