首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Probabilistic seismic risk analysis is a well‐established method in the insurance industry for modeling portfolio losses from earthquake events. In this context, precise exposure locations are often unknown. However, so far, location uncertainty has not been in the focus of a large amount of research. In this article, we propose a novel framework for treatment of location uncertainty. As a case study, a large number of synthetic portfolios resembling typical real‐world cases were created. We investigate the effect of portfolio characteristics such as value distribution, portfolio size, or proportion of risk items with unknown coordinates on the variability of loss frequency estimations. The results indicate that due to loss aggregation effects and spatial hazard variability, location uncertainty in isolation and in conjunction with ground motion uncertainty can induce significant variability to probabilistic loss results, especially for portfolios with a small number of risks. After quantifying its effect, we conclude that location uncertainty should not be neglected when assessing probabilistic seismic risk, but should be treated stochastically and the resulting variability should be visualized and interpreted carefully.  相似文献   

2.
Comparative risk projects can provide broad policy guidance but they rarely have adequate scientific foundations to support precise risk rankings. Many extant projects report rankings anyway, with limited attention to uncertainty. Stochastic uncertainty, structural uncertainty, and ignorance are types of incertitude that afflict risk comparisons. The recently completed New Jersey Comparative Risk Project was innovative in trying to acknowledge and accommodate some historically ignored uncertainties in a substantive manner. This article examines the methods used and lessons learned from the New Jersey project. Monte Carlo techniques were used to characterize stochastic uncertainty, and sensitivity analysis helped to manage structural uncertainty. A deliberative process and a sorting technique helped manage ignorance. Key findings are that stochastic rankings can be calculated but they reveal such an alarming degree of imprecision that the rankings are no longer useful, whereas sorting techniques are helpful in spite of uncertainty. A deliberative process is helpful to counter analytical overreaching.  相似文献   

3.
Most public health risk assessments assume and combine a series of average, conservative, and worst-case values to derive a conservative point estimate of risk. This procedure has major limitations. This paper demonstrates a new methodology for extended uncertainty analyses in public health risk assessments using Monte Carlo techniques. The extended method begins as do some conventional methods--with the preparation of a spreadsheet to estimate exposure and risk. This method, however, continues by modeling key inputs as random variables described by probability density functions (PDFs). Overall, the technique provides a quantitative way to estimate the probability distributions for exposure and health risks within the validity of the model used. As an example, this paper presents a simplified case study for children playing in soils contaminated with benzene and benzo(a)pyrene (BaP).  相似文献   

4.
Whether and to what extent contaminated sites harm ecologic and human health are topics of considerable interest, but also considerable uncertainty. Several federal and state agencies have approved the use of some or many aspects of probabilistic risk assessment (PRA), but its site-specific application has often been limited to high-profile sites and large projects. Nonetheless, times are changing: newly developed software tools, and recent federal and state guidance documents formalizing PRA procedures, now make PRA a readily available method of analysis for even small-scale projects. This article presents and discusses a broad review of PRA literature published since 2000.  相似文献   

5.
Landfilling is a cost‐effective method, which makes it a widely used practice around the world, especially in developing countries. However, because of the improper management of landfills, high leachate leakage can have adverse impacts on soils, plants, groundwater, aquatic organisms, and, subsequently, human health. A comprehensive survey of the literature finds that the probabilistic quantification of uncertainty based on estimations of the human health risks due to landfill leachate contamination has rarely been reported. Hence, in the present study, the uncertainty about the human health risks from municipal solid waste landfill leachate contamination to children and adults was quantified to investigate its long‐term risks by using a Monte Carlo simulation framework for selected heavy metals. The Turbhe sanitary landfill of Navi Mumbai, India, which was commissioned in the recent past, was selected to understand the fate and transport of heavy metals in leachate. A large residential area is located near the site, which makes the risk assessment problem both crucial and challenging. In this article, an integral approach in the form of a framework has been proposed to quantify the uncertainty that is intrinsic to human health risk estimation. A set of nonparametric cubic splines was fitted to identify the nonlinear seasonal trend in leachate quality parameters. LandSim 2.5, a landfill simulator, was used to simulate the landfill activities for various time slices, and further uncertainty in noncarcinogenic human health risk was estimated using a Monte Carlo simulation followed by univariate and multivariate sensitivity analyses.  相似文献   

6.
Elodie Adida 《Risk analysis》2011,31(10):1622-1631
An effective nonpharmaceutical intervention for influenza interrupts an exposure route that contributes significantly to infection risk. Herein, we use uncertainty analysis (point‐interval method) and Monte Carlo simulation to explore the magnitude of infection risk and predominant route of exposure. We utilized a previously published mathematical model of a susceptible person attending a bed‐ridden infectious person. Infection risk is sensitive to the magnitude of virus emission and contact rates. The contribution of droplet spray exposure to infection risk increases with cough frequency, and decreases with virus concentration in cough particles. We consider two infectivity scenarios: greater infectivity of virus deposited in the upper respiratory tract than virus inhaled in respirable aerosols, based on human studies; and equal infectivity in the two locations, based on studies in guinea pigs. Given that virus have equal probability of infection throughout the respiratory tract, the mean overall infection risk is 9.8 × 10?2 (95th percentile 0.78). However, when virus in the upper respiratory tract is less infectious than inhaled virus, the overall infection risk is several orders of magnitude lower. In this event, inhalation is a significant exposure route. Contact transmission is important in both infectivity scenarios. The presence of virus in only respirable particles increases the mean overall infection risk by 1–3 orders of magnitude, with inhalation contributing ≥ 99% of the infection risk. The analysis indicates that reduction of uncertainties in the concentration of virus in expiratory particles of different sizes, expiratory event frequency, and infectivity at different sites in the respiratory tract will clarify the predominate exposure routes for influenza.  相似文献   

7.
Indirect exposures to 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD) and other toxic materials released in incinerator emissions have been identified as a significant concern for human health. As a result, regulatory agencies and researchers have developed specific approaches for evaluating exposures from indirect pathways. This paper presents a quantitative assessment of the effect of uncertainty and variation in exposure parameters on the resulting estimates of TCDD dose rates received by individuals indirectly exposed to incinerator emissions through the consumption of home-grown beef. The assessment uses a nested Monte Carlo model that separately characterizes uncertainty and variation in dose rate estimates. Uncertainty resulting from limited data on the fate and transport of TCDD are evaluated, and variations in estimated dose rates in the exposed population that result from location-specific parameters and individuals'behaviors are characterized. The analysis indicates that lifetime average daily dose rates for individuals living within 10 km of a hypothetical incinerator range over three orders of magnitude. In contrast, the uncertainty in the dose rate distribution appears to vary by less than one order of magnitude, based on the sources of uncertainty included in this analysis. Current guidance for predicting exposures from indirect exposure pathways was found to overestimate the intakes for typical and high-end individuals.  相似文献   

8.
Traditionally, microbial risk assessors have used point estimates to evaluate the probability that an individual will become infected. We developed a quantitative approach that shifts the risk characterization perspective from point estimate to distributional estimate, and from individual to population. To this end, we first designed and implemented a dynamic model that tracks traditional epidemiological variables such as the number of susceptible, infected, diseased, and immune, and environmental variables such as pathogen density. Second, we used a simulation methodology that explicitly acknowledges the uncertainty and variability associated with the data. Specifically, the approach consists of assigning probability distributions to each parameter, sampling from these distributions for Monte Carlo simulations, and using a binary classification to assess the output of each simulation. A case study is presented that explores the uncertainties in assessing the risk of giardiasis when swimming in a recreational impoundment using reclaimed water. Using literature-based information to assign parameters ranges, our analysis demonstrated that the parameter describing the shedding of pathogens by infected swimmers was the factor that contributed most to the uncertainty in risk. The importance of other parameters was dependent on reducing the a priori range of this shedding parameter. By constraining the shedding parameter to its lower subrange, treatment efficiency was the parameter most important in predicting whether a simulation resulted in prevalences above or below non outbreak levels. Whereas parameters associated with human exposure were important when the shedding parameter was constrained to a higher subrange. This Monte Carlo simulation technique identified conditions in which outbreaks and/or nonoutbreaks are likely and identified the parameters that most contributed to the uncertainty associated with a risk prediction.  相似文献   

9.
Standard statistical methods understate the uncertainty one should attach to effect estimates obtained from observational data. Among the methods used to address this problem are sensitivity analysis, Monte Carlo risk analysis (MCRA), and Bayesian uncertainty assessment. Estimates from MCRAs have been presented as if they were valid frequentist or Bayesian results, but examples show that they need not be either in actual applications. It is concluded that both sensitivity analyses and MCRA should begin with the same type of prior specification effort as Bayesian analysis.  相似文献   

10.
11.
A. E. Ades  G. Lu 《Risk analysis》2003,23(6):1165-1172
Monte Carlo simulation has become the accepted method for propagating parameter uncertainty through risk models. It is widely appreciated, however, that correlations between input variables must be taken into account if models are to deliver correct assessments of uncertainty in risk. Various two-stage methods have been proposed that first estimate a correlation structure and then generate Monte Carlo simulations, which incorporate this structure while leaving marginal distributions of parameters unchanged. Here we propose a one-stage alternative, in which the correlation structure is estimated from the data directly by Bayesian Markov Chain Monte Carlo methods. Samples from the posterior distribution of the outputs then correctly reflect the correlation between parameters, given the data and the model. Besides its computational simplicity, this approach utilizes the available evidence from a wide variety of structures, including incomplete data and correlated and uncorrelated repeat observations. The major advantage of a Bayesian approach is that, rather than assuming the correlation structure is fixed and known, it captures the joint uncertainty induced by the data in all parameters, including variances and covariances, and correctly propagates this through the decision or risk model. These features are illustrated with examples on emissions of dioxin congeners from solid waste incinerators.  相似文献   

12.
For noncancer effects, the degree of human interindividual variability plays a central role in determining the risk that can be expected at low exposures. This discussion reviews available data on observations of interindividual variability in (a) breathing rates, based on observations in British coal miners; (b) systemic pharmacokinetic parameters, based on studies of a number of drugs; (c) susceptibility to neurological effects from fetal exposure to methyl mercury, based on observations of the incidence of effects in relation to hair mercury levels; and (d) chronic lung function changes in relation to long-term exposure to cigarette smoke. The quantitative ranges of predictions that follow from uncertainties in estimates of interindividual variability in susceptibility are illustrated.  相似文献   

13.
Currently, there is a trend away from the use of single (often conservative) estimates of risk to summarize the results of risk analyses in favor of stochastic methods which provide a more complete characterization of risk. The use of such stochastic methods leads to a distribution of possible values of risk, taking into account both uncertainty and variability in all of the factors affecting risk. In this article, we propose a general framework for the analysis of uncertainty and variability for use in the commonly encountered case of multiplicative risk models, in which risk may be expressed as a product of two or more risk factors. Our analytical methods facilitate the evaluation of overall uncertainty and variability in risk assessment, as well as the contributions of individual risk factors to both uncertainty and variability which is cumbersome using Monte Carlo methods. The use of these methods is illustrated in the analysis of potential cancer risks due to the ingestion of radon in drinking water.  相似文献   

14.
In quantitative uncertainty analysis, it is essential to define rigorously the endpoint or target of the assessment. Two distinctly different approaches using Monte Carlo methods are discussed: (1) the end point is a fixed but unknown value (e.g., the maximally exposed individual, the average individual, or a specific individual) or (2) the end point is an unknown distribution of values (e.g., the variability of exposures among unspecified individuals in the population). In the first case, values are sampled at random from distributions representing various "degrees of belief" about the unknown "fixed" values of the parameters to produce a distribution of model results. The distribution of model results represents a subjective confidence statement about the true but unknown assessment end point. The important input parameters are those that contribute most to the spread in the distribution of the model results. In the second case, Monte Carlo calculations are performed in two dimensions producing numerous alternative representations of the true but unknown distribution. These alternative distributions permit subject confidence statements to be made from two perspectives: (1) for the individual exposure occurring at a specified fractile of the distribution or (2) for the fractile of the distribution associated with a specified level of individual exposure. The relative importance of input parameters will depend on the fractile or exposure level of interest. The quantification of uncertainty for the simulation of a true but unknown distribution of values represents the state-of-the-art in assessment modeling.  相似文献   

15.
Interest in examining both the uncertainty and variability in environmental health risk assessments has led to increased use of methods for propagating uncertainty. While a variety of approaches have been described, the advent of both powerful personal computers and commercially available simulation software have led to increased use of Monte Carlo simulation. Although most analysts and regulators are encouraged by these developments, some are concerned that Monte Carlo analysis is being applied uncritically. The validity of any analysis is contingent on the validity of the inputs to the analysis. In the propagation of uncertainty or variability, it is essential that the statistical distribution of input variables are properly specified. Furthermore, any dependencies among the input variables must be considered in the analysis. In light of the potential difficulty in specifying dependencies among input variables, it is useful to consider whether there exist rules of thumb as to when correlations can be safely ignored (i.e., when little overall precision is gained by an additional effort to improve upon an estimation of correlation). We make use of well-known error propagation formulas to develop expressions intended to aid the analyst in situations wherein normally and lognormally distributed variables are linearly correlated.  相似文献   

16.
The uncertainty associated with estimates should be taken into account in quantitative risk assessment. Each input's uncertainty can be characterized through a probabilistic distribution for use under Monte Carlo simulations. In this study, the sampling uncertainty associated with estimating a low proportion on the basis of a small sample size was considered. A common application in microbial risk assessment is the estimation of a prevalence, proportion of contaminated food products, on the basis of few tested units. Three Bayesian approaches (based on beta(0, 0), beta(1/2, 1/2), and beta(l, 1)) and one frequentist approach (based on the frequentist confidence distribution) were compared and evaluated on the basis of simulations. For small samples, we demonstrated some differences between the four tested methods. We concluded that the better method depends on the true proportion of contaminated products, which is by definition unknown in common practice. When no prior information is available, we recommend the beta (1/2, 1/2) prior or the confidence distribution. To illustrate the importance of these differences, the four methods were used in an applied example. We performed two-dimensional Monte Carlo simulations to estimate the proportion of cold smoked salmon packs contaminated by Listeria monocytogenes, one dimension representing within-factory uncertainty, modeled by each of the four studied methods, and the other dimension representing variability between companies.  相似文献   

17.
《Risk analysis》2018,38(1):163-176
The U.S. Environmental Protection Agency (EPA) uses health risk assessment to help inform its decisions in setting national ambient air quality standards (NAAQS). EPA's standard approach is to make epidemiologically‐based risk estimates based on a single statistical model selected from the scientific literature, called the “core” model. The uncertainty presented for “core” risk estimates reflects only the statistical uncertainty associated with that one model's concentration‐response function parameter estimate(s). However, epidemiologically‐based risk estimates are also subject to “model uncertainty,” which is a lack of knowledge about which of many plausible model specifications and data sets best reflects the true relationship between health and ambient pollutant concentrations. In 2002, a National Academies of Sciences (NAS) committee recommended that model uncertainty be integrated into EPA's standard risk analysis approach. This article discusses how model uncertainty can be taken into account with an integrated uncertainty analysis (IUA) of health risk estimates. It provides an illustrative numerical example based on risk of premature death from respiratory mortality due to long‐term exposures to ambient ozone, which is a health risk considered in the 2015 ozone NAAQS decision. This example demonstrates that use of IUA to quantitatively incorporate key model uncertainties into risk estimates produces a substantially altered understanding of the potential public health gain of a NAAQS policy decision, and that IUA can also produce more helpful insights to guide that decision, such as evidence of decreasing incremental health gains from progressive tightening of a NAAQS.  相似文献   

18.
An integrated, quantitative approach to incorporating both uncertainty and interindividual variability into risk prediction models is described. Individual risk R is treated as a variable distributed in both an uncertainty dimension and a variability dimension, whereas population risk I (the number of additional cases caused by R) is purely uncertain. I is shown to follow a compound Poisson-binomial distribution, which in low-level risk contexts can often be approximated well by a corresponding compound Poisson distribution. The proposed analytic framework is illustrated with an application to cancer risk assessment for a California population exposed to 1,2-dibromo-3-chloropropane from ground water.  相似文献   

19.
A call for risk assessment approaches that better characterize and quantify uncertainty has been made by the scientific and regulatory community. This paper responds to that call by demonstrating a distributional approach that draws upon human data to derive potency estimates and to identify and quantify important sources of uncertainty. The approach is rooted in the science of decision analysis and employs an influence diagram, a decision tree, probabilistic weights, and a distribution of point estimates of carcinogenic potency. Its results estimate the likelihood of different carcinogenic risks (potencies) for a chemical under a specific scenario. For this exercise, human data on formaldehyde were employed to demonstrate the approach. Sensitivity analyses were performed to determine the relative impact of specific levels and alternatives on the potency distribution. The resulting potency estimates are compared with the results of an exercise using animal data on formaldehyde. The paper demonstrates that distributional risk assessment is readily adapted to situations in which epidemiologic data serve as the basis for potency estimates. Strengths and weaknesses of the distributional approach are discussed. Areas for further application and research are recommended.  相似文献   

20.
A wide range of uncertainties will be introduced inevitably during the process of performing a safety assessment of engineering systems. The impact of all these uncertainties must be addressed if the analysis is to serve as a tool in the decision-making process. Uncertainties present in the components (input parameters of model or basic events) of model output are propagated to quantify its impact in the final results. There are several methods available in the literature, namely, method of moments, discrete probability analysis, Monte Carlo simulation, fuzzy arithmetic, and Dempster-Shafer theory. All the methods are different in terms of characterizing at the component level and also in propagating to the system level. All these methods have different desirable and undesirable features, making them more or less useful in different situations. In the probabilistic framework, which is most widely used, probability distribution is used to characterize uncertainty. However, in situations in which one cannot specify (1) parameter values for input distributions, (2) precise probability distributions (shape), and (3) dependencies between input parameters, these methods have limitations and are found to be not effective. In order to address some of these limitations, the article presents uncertainty analysis in the context of level-1 probabilistic safety assessment (PSA) based on a probability bounds (PB) approach. PB analysis combines probability theory and interval arithmetic to produce probability boxes (p-boxes), structures that allow the comprehensive propagation through calculation in a rigorous way. A practical case study is also carried out with the developed code based on the PB approach and compared with the two-phase Monte Carlo simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号