首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let X1,…, Xn be mutually independent non-negative integer-valued random variables with probability mass functions fi(x) > 0 for z= 0,1,…. Let E denote the event that {X1X2≥…≥Xn}. This note shows that, conditional on the event E, Xi-Xi+ 1 and Xi+ 1 are independent for all t = 1,…, k if and only if Xi (i= 1,…, k) are geometric random variables, where 1 ≤kn-1. The k geometric distributions can have different parameters θi, i= 1,…, k.  相似文献   

2.
Let X 1, X 2,…, X k be k (≥2) independent random variables from gamma populations Π1, Π2,…, Π k with common known shape parameter α and unknown scale parameter θ i , i = 1,2,…,k, respectively. Let X (i) denotes the ith order statistics of X 1,X 2,…,X k . Suppose the population corresponding to largest X (k) (or the smallest X (1)) observation is selected. We consider the problem of estimating the scale parameter θ M (or θ J ) of the selected population under the entropy loss function. For k ≥ 2, we obtain the Unique Minimum Risk Unbiased (UMRU) estimator of θ M (and θ J ). For k = 2, we derive the class of all linear admissible estimators of the form cX (2) (and cX (1)) and show that the UMRU estimator of θ M is inadmissible. The results are extended to some subclass of exponential family.  相似文献   

3.
Let X1,…,Xn be exchangeable normal variables with a common correlation p, and let X(1) > … > X(n) denote their order statistics. The random variable σni=nk+1xi, called the selection differential by geneticists, is of particular interest in genetic selection and related areas. In this paper we give results concerning a conjecture of Tong (1982) on the distribution of this random variable as a function of ρ. The same technique used can be applied to yield more general results for linear combinations of order statistics from elliptical distributions.  相似文献   

4.
Consider a sequence of independent random variables X 1, X 2,…,X n observed at n equally spaced time points where X i has a probability distribution which is known apart from the values of a parameter θ i R which may change from observation to observation. We consider the problem of estimating θ = (θ1, θ2,…,θ n ) given the observed values of X 1, X 2,…,X n . The paper proposes a prior distribution for the parameters θ for which sets of parameter values exhibiting no change, or no change apart from a few sudden large changes, or lots of small changes, all have positive prior probability. Markov chain sampling may be used to calculate Bayes estimates of the parameters. We report the results of a Monte Carlo study based on Poisson distributed data which compares the Bayes estimator with estimators obtained using cubic splines and with estimators derived from the Schwarz criterion. We conclude that the Bayes method is preferable in a minimax sense since it never produces the disastrously large errors of the other methods and pays only a modest price for this degree of safety. All three methods are used to smooth mortality rates for oesophageal cancer in Irish males aged 65–69 over the period 1955 through 1994.  相似文献   

5.
Let X1, X2…,Xn be a random sample from [ILM0001] and let Y1, …,Yn be a random sample from [ILM0002]. Then instead of observing a complete sample X1,…Xn, we can only observe the pairs Zi. = min(Xi.,Yi) and [ILM0003] In this paper, we consider estimation of survival function [ILM0004] when [ILM0005], where β is an unknown positive real number.

  相似文献   

6.
X1, X2, …, Xk are k(k ? 2) uniform populations which each Xi follows U(0, θi). This note shows the test statistic for the null hypothesis H0: θ1 = θ2 = ??? = θk by using the order statistics.  相似文献   

7.
In analyzing the lifetime properties of a coherent system, the concept of “signature” is a useful tool. Let T be the lifetime of a coherent system having n iid components. The signature of the system is a probability vector s=(s1, s2, …, sn), such that si=P(T=Xi:n), where, Xi:n, i=1, 2, …, n denote the ordered lifetimes of the components. In this note, we assume that the system is working at time t>0. We consider the conditional signature of the system as a vector in which the ith element is defined as pi(t)=P(T=Xi:n|T>t) and investigate its properties as a function of time.  相似文献   

8.
9.
Let Xi be i.i.d. random variables with finite expectations, and θi arbitrary constants, i=1,…,n. Yi=Xii. The expected range of the Y's is Rn1,…,θn)=E(maxYi-minYi. It is shown that the expected range is minimized if and only if θ1=?=θn. In the case where the Xi are independently and symmetrically distributed around the same constant, but not identically distributed, it is shown that θ1=?=θn are not necessarily the only (θ1,...,θn) minimizing Rn. Some lemmas which are applicable to more general problems of minimizing Rn are also given.  相似文献   

10.
Let X 1,X 2,…,X n be independent exponential random variables such that X i has hazard rate λ for i = 1,…,p and X j has hazard rate λ* for j = p + 1,…,n, where 1 ≤ p < n. Denote by D i:n (λ, λ*) = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…,n, where X 0:n ≡ 0. It is shown that the spacings (D 1,n ,D 2,n ,…,D n:n ) are MTP2, strengthening one result of Khaledi and Kochar (2000), and that (D 1:n 2, λ*),…,D n:n 2, λ*)) ≤ lr (D 1:n 1, λ*),…,D n:n 1, λ*)) for λ1 ≤ λ* ≤ λ2, where ≤ lr denotes the multivariate likelihood ratio order. A counterexample is also given to show that this comparison result is in general not true for λ* < λ1 < λ2.  相似文献   

11.
Let X1 X2 … XN be independent normal p-vectors with common mean vector $$ = ($$) and common nonsingular covariance matrix $$ = Diag ($sGi) [(1–p) I + pE] Diag ($sGi), $sGi> 0, i = 1… p, 1>p>=1/p–1. Write rij = sample correlation between the i th and the j th variable i j = 1,… p. It has been proved that for testing the hypothesis H0 : p = 0 against the alternative H1 : p>0 where $$ and $sG1,…, $sGp are unknown, the test which rejects H0 for large value of $$ rij is locally best invariant for every $aL: 0 > $aL > 1 and locally minimax as p $$ 0 in the sense of Giri and Kiefer, 1964, for every $aL: 0 > $aL $$ $aL0 > 1 where$aL0 = Pp=0 $$.  相似文献   

12.
Let Xl,…,Xn be normally and independently distributed with means θl,…,θnand a cornmorl variance. Thus there are n observations and n+i unknwon parameters. A test of the null hypothesis that, the θi's are all zero and the alternative that the vector (θl,…,θn) lies in a convex cone with its vertex a.t the origin is connsidered in this paper. It is shown that under a mild condition the likelihood ratio test is possible. The ordinary one sided t - test belongs to the class of tests considered in this paper. The hypothesis of equality of means against the simple order alternative can be tested in certain cases .  相似文献   

13.
Let πi (i=1,2,…, k) be charceterized by the uniform distribution on (ai;bi), where exactly one of ai and bi is unknown. With unequal sample sizes, suppose that from the k (>=2) given populations, we wish to select a random-size subset containing the one with the smllest value of θi= bi - ai. RuleRi selects π if a likelihood-based k-dimensional confidence region for the unknown (θ1,… θk) contains at least one point having θi as its smallest component. A second rule, R , is derived through a likelihood ratio and turns out to be that of Barr and prabhu whenthe sample sizes are equal. Numerical comparisons are made. The results apply to the larger class of densities g ( z ; θi) =M(z)Q(θi) if a(θi) < z <b(θi). Extensions to the cases when both ai and bi are unknown and when θj isof interest are indicated. 1<=j<=k  相似文献   

14.
Let π1, …, πk be k (? 2) independent populations, where πi denotes the uniform distribution over the interval (0, θi) and θi > 0 (i = 1, …, k) is an unknown scale parameter. The population associated with the largest scale parameter is called the best population. For selecting the best population, We use a selection rule based on the natural estimators of θi, i = 1, …, k, for the case of unequal sample sizes. Consider the problem of estimating the scale parameter θL of the selected uniform population when sample sizes are unequal and the loss is measured by the squared log error (SLE) loss function. We derive the uniformly minimum risk unbiased (UMRU) estimator of θL under the SLE loss function and two natural estimators of θL are also studied. For k = 2, we derive a sufficient condition for inadmissibility of an estimator of θL. Using these condition, we conclude that the UMRU estimator and natural estimator are inadmissible. Finally, the risk functions of various competing estimators of θL are compared through simulation.  相似文献   

15.
Abstract

Let the data from the ith treatment/population follow a distribution with cumulative distribution function (cdf) F i (x) = F[(x ? μ i )/θ i ], i = 1,…, k (k ≥ 2). Here μ i (?∞ < μ i  < ∞) is the location parameter, θ i i  > 0) is the scale parameter and F(?) is any absolutely continuous cdf, i.e., F i (?) is a member of location-scale family, i = 1,…, k. In this paper, we propose a class of tests to test the null hypothesis H 0 ? θ1 = · = θ k against the simple ordered alternative H A  ? θ1 ≤ · ≤ θ k with at least one strict inequality. In literature, use of sample quasi range as a measure of dispersion has been advocated for small sample size or sample contaminated by outliers [see David, H. A. (1981). Order Statistics. 2nd ed. New York: John Wiley, Sec. 7.4]. Let X i1,…, X in be a random sample of size n from the population π i and R ir  = X i:n?r  ? X i:r+1, r = 0, 1,…, [n/2] ? 1 be the sample quasi range corresponding to this random sample, where X i:j represents the jth order statistic in the ith sample, j = 1,…, n; i = 1,…, k and [x] is the greatest integer less than or equal to x. The proposed class of tests, for the general location scale setup, is based on the statistic W r  = max1≤i<jk (R jr /R ir ). The test is reject H 0 for large values of W r . The construction of a three-decision procedure and simultaneous one-sided lower confidence bounds for the ratios, θ j i , 1 ≤ i < j ≤ k, have also been discussed with the help of the critical constants of the test statistic W r . Applications of the proposed class of tests to two parameter exponential and uniform probability models have been discussed separately with necessary tables. Comparisons of some members of our class with the tests of Gill and Dhawan [Gill A. N., Dhawan A. K. (1999). A One-sided test for testing homogeneity of scale parameters against ordered alternative. Commun. Stat. – Theory and Methods 28(10):2417–2439] and Kochar and Gupta [Kochar, S. C., Gupta, R. P. (1985). A class of distribution-free tests for testing homogeneity of variances against ordered alternatives. In: Dykstra, R. et al., ed. Proceedings of the Conference on Advances in Order Restricted Statistical Inference at Iowa city. Springer Verlag, pp. 169–183], in terms of simulated power, are also presented.  相似文献   

16.
Let X1, X2, …, Xm be successive observations on m objects, numbered 1,2, …, m. If X1 belongs to the n largest observations among X1,X2,…,Xi, object i is called a record, i = 1,2,…,m; n?1.In investigating the influence of the ranking of the objects on the expected number of records, a hierarchy of stochastic order relations between random variables arises.It is these order relations and their relationship with known stochastic orderings that are studied in this paper.  相似文献   

17.
We consider n pairs of random variables (X11,X21),(X12,X22),… (X1n,X2n) having a bivariate elliptically contoured density of the form where θ1 θ2 are location parameters and Δ = ((λik)) is a 2 × 2 symmetric positive definite matrix of scale parameters. The exact distribution of the Pearson product-moment correlation coefficient between X1 and X2 is obtained. The usual case when a sample of size n is drawn from a bivariate normal population is a special case of the abovementioned model.  相似文献   

18.
Let X = (Xj : j = 1,…, n) be n row vectors of dimension p independently and identically distributed multinomial. For each j, Xj is partitioned as Xj = (Xj1, Xj2, Xj3), where pi is the dimension of Xji with p1 = 1,p1+p2+p3 = p. In addition, consider vectors Yji, i = 1,2j = 1,…,ni that are independent and distributed as X1i. We treat here the problem of testing independence between X11 and X13 knowing that X11 and X12 are uncorrected. A locally best invariant test is proposed for this problem.  相似文献   

19.
Consider the randomly weighted sums Sm(θ) = ∑mi = 1θiXi, 1 ? m ? n, and their maxima Mn(θ) = max?1 ? m ? nSm(θ), where Xi, 1 ? i ? n, are real-valued and dependent according to a wide type of dependence structure, and θi, 1 ? i ? n, are non negative and arbitrarily dependent, but independent of Xi, 1 ? i ? n. Under some mild conditions on the right tails of the weights θi, 1 ? i ? n, we establish some asymptotic equivalence formulas for the tail probabilities of Sn(θ) and Mn(θ) in the case where Xi, 1 ? i ? n, are dominatedly varying, long-tailed and subexponential distributions, respectively.  相似文献   

20.
Let (θ1,x1),…,(θn,xn) be independent and identically distributed random vectors with E(xθ) = θ and Var(x|θ) = a + bθ + cθ2. Let ti be the linear Bayes estimator of θi and θ~i be the linear empirical Bayes estimator of θi as proposed in Robbins (1983). When Ex and Var x are unknown to the statistician. The regret of using θ~i instead of ti because of ignorance of the mean and the variance is ri = E(θi ? θi)2 ?E(tii)2. Under appropriate conditions cumulative regret Rn = r1+…rn is shown to have a finite limit even when n tends to infinity. The limit can be explicitly computed in terms of a,b,c and the first four moments of x.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号