首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The robust principal components analysis (RPCA) introduced by Campbell (Applied Statistics 1980, 29, 231–237) provides in addition to robust versions of the usual output of a principal components analysis, weights for the contribution of each point to the robust estimation of each component. Low weights may thus be used to indicate outliers. The present simulation study provides critical values for testing the kth smallest weight in the RPCA of a sample of n p-dimensional vectors, under the null hypothesis of a multivariate normal distribution. The cases p=2(2)10, 15, 20 for n=20, 30, 40, 50, 75, 100 subject to n≥p/2, are examined, with k≤√n.  相似文献   

3.
A robust test is developed for testing equality of the mean vectors of two bivariate (multivariate) populations when the variance-covariance matrices are not necessarily equal. The test is an extension of the univariate robust test given by Tiku and Singh (1981).  相似文献   

4.
DNA microarray experiments result in enormous amount of data, which need careful interpretation. Biplot approaches show simultaneous display of genes and samples in low-dimensional graphs and thus can be used to represent the relationships between genes and samples. There are several different types of biplots, and these methods need to be evaluated because each plot provides different result.  相似文献   

5.
6.
A test based on Tiku's MML (modified maximum likelihood) estimators is developed for testing that the population correlation coefficient is zero. The test is compared with various other tests and shown to have good Type I error robustness and power for numerous symmetric and skew bivariate populations.  相似文献   

7.
The robust statistic T2 Dproposed by Tiku and Singh (1982) for testing the equality of mean vectors of two mu1 t ivariate populations is modified to test the equality of variance-covariance matrices.  相似文献   

8.
Univariate time series often take the form of a collection of curves observed sequentially over time. Examples of these include hourly ground-level ozone concentration curves. These curves can be viewed as a time series of functions observed at equally spaced intervals over a dense grid. Since functional time series may contain various types of outliers, we introduce a robust functional time series forecasting method to down-weigh the influence of outliers in forecasting. Through a robust principal component analysis based on projection pursuit, a time series of functions can be decomposed into a set of robust dynamic functional principal components and their associated scores. Conditioning on the estimated functional principal components, the crux of the curve-forecasting problem lies in modelling and forecasting principal component scores, through a robust vector autoregressive forecasting method. Via a simulation study and an empirical study on forecasting ground-level ozone concentration, the robust method demonstrates the superior forecast accuracy that dynamic functional principal component regression entails. The robust method also shows the superior estimation accuracy of the parameters in the vector autoregressive models for modelling and forecasting principal component scores, and thus improves curve forecast accuracy.  相似文献   

9.
Several methods have been suggested to calculate robust M- and G-M -estimators of the regression parameter β and of the error scale parameter σ in a linear model. This paper shows that, for some data sets well known in robust statistics, the nonlinear systems of equations for the simultaneous estimation of β, with an M-estimate with a redescending ψ-function, and σ, with the residual median absolute deviation (MAD), have many solutions. This multiplicity is not caused by the possible lack of uniqueness, for redescending ψ-functions, of the solutions of the system defining β with known σ; rather, the simultaneous estimation of β and σ together creates the problem. A way to avoid these multiple solutions is to proceed in two steps. First take σ as the median absolute deviation of the residuals for a uniquely defined robust M-estimate such as Huber's Proposal 2 or the L1-estimate. Then solve the nonlinear system for the M-estimate with σ equal to the value obtained at the first step to get the estimate of β. Analytical conditions for the uniqueness of M and G-M-estimates are also given.  相似文献   

10.
A method of examining the uniqueness of estimates is reviewed, which we show to be flawed in that it neglects a continuity problem that can arise when simultaneously estimating the scale and regression parameters.  相似文献   

11.
Control charts are one of the widest used techniques in statistical process control. In Phase I, historical observations are analysed in order to construct a control chart. Because of the existence of multiple outliers that are undetected by control charts such as Hotelling’s T 2 due to the masking effect, robust alternatives to Hotelling’s T 2 have been developed based on minimum volume ellipsoid (MVE) estimators, minimum covariance determinant (MCD) estimators, reweighted MCD estimators or trimmed estimators. In this paper, we use a simulation study to analyse the performance of each alternative in various situations and offer guidance for the correct use of each estimator.  相似文献   

12.
Logistic discrimination is a well documented method for classifying observations to two or more groups. However, estimation of the discriminant rule can be seriously affected by outliers. To overcome this, Cox and Ferry produced a robust logistic discrimination technique. Although their method worked in practice, parameter estimation was sometimes prone to convergence problems. This paper proposes a simplified robust logistic model which does not have any such problems and which takes a generalized linear model form. Misclassification rates calculated in a simulation exercise are used to compare the new method with ordinary logistic discrimination. Model diagnostics are also presented. The newly proposed model is then used on data collected from pregnant women at two district general hospitals. A robust logistic discriminant is calculated which can be used to predict accurately which method of feeding a woman will eventually use: breast feeding or bottle feeding.  相似文献   

13.
The robust bivariate Hotelling–type T2 statistics proposed by Tiku and Balakrishnan (1988) is extendend to p–variate (p ≧ 3) populations.  相似文献   

14.
Numerous papers have considered the problem of comparing univariate measures of dispersion corresponding to two independent groups. This paper considers a multivariate generalization of this problem where the goal is to compare robust generalized variances. For reasons given in the paper, attention is focused on a particular W-estimator where multivariate outliers are downweighted via a projection-type outlier detection method. Included are results on the small-sample efficiency of several estimators plus comments on using the usual generalized variance.  相似文献   

15.
M-estimation of a single parameter of the life time distribution is considered based on independent and identically distributed survival data which may be randomly censored. The most robust and the optimal robust M-estimators of the location parameters of the survival time distribution are derived within a class considered in James (1986) as well as for the general unrestricted class. The properties of the estimators corresponding to the above two classes are discussed. A data set is used to illustrate the usefulness of the optimal robust estimators for the parameter of extreme value distribution.  相似文献   

16.
In this paper we extend the closed-form estimator for the generalized autoregressive conditional heteroscedastic (GARCH(1,1)) proposed by Kristensen and Linton [A closed-form estimator for the GARCH(1,1) model. Econom Theory. 2006;22:323–337] to deal with additive outliers. It has the advantage that is per se more robust that the maximum likelihood estimator (ML) often used to estimate this model, it is easy to implement and does not require the use of any numerical optimization procedure. The robustification of the closed-form estimator is done by replacing the sample autocorrelations by a robust estimator of these correlations and by estimating the volatility using robust filters. The performance of our proposal in estimating the parameters and the volatility of the GARCH(1,1) model is compared with the proposals existing in the literature via intensive Monte Carlo experiments and the results of these experiments show that our proposal outperforms the ML and quasi-maximum likelihood estimators-based procedures. Finally, we fit the robust closed-form estimator and the benchmarks to one series of financial returns and analyse their performances in estimating and forecasting the volatility and the value-at-risk.  相似文献   

17.
A method for robustness in linear models is to assume that there is a mixture of standard and outlier observations with a different error variance for each class. For generalised linear models (GLMs) the mixture model approach is more difficult as the error variance for many distributions has a fixed relationship to the mean. This model is extended to GLMs by changing the classes to one where the standard class is a standard GLM and the outlier class which is an overdispersed GLM achieved by including a random effect term in the linear predictor. The advantages of this method are it can be extended to any model with a linear predictor, and outlier observations can be easily identified. Using simulation the model is compared to an M-estimator, and found to have improved bias and coverage. The method is demonstrated on three examples.  相似文献   

18.
Principal component regression uses principal components (PCs) as regressors. It is particularly useful in prediction settings with high-dimensional covariates. The existing literature treating of Bayesian approaches is relatively sparse. We introduce a Bayesian approach that is robust to outliers in both the dependent variable and the covariates. Outliers can be thought of as observations that are not in line with the general trend. The proposed approach automatically penalises these observations so that their impact on the posterior gradually vanishes as they move further and further away from the general trend, corresponding to a concept in Bayesian statistics called whole robustness. The predictions produced are thus consistent with the bulk of the data. The approach also exploits the geometry of PCs to efficiently identify those that are significant. Individual predictions obtained from the resulting models are consolidated according to model-averaging mechanisms to account for model uncertainty. The approach is evaluated on real data and compared to its nonrobust Bayesian counterpart, the traditional frequentist approach and a commonly employed robust frequentist method. Detailed guidelines to automate the entire statistical procedure are provided. All required code is made available, see ArXiv:1711.06341.  相似文献   

19.
20.
We show that the existing tests for asymptotic independence are sensitive to outliers. A robust test is proposed. The new test is made stable under contamination through a shrinkage scheme. Simulations show that the new test performs well in the presence of contaminated data while maintaining good properties when there is no contamination. An application to real data shows the added value of our new robust approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号