首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article discusses regression analysis of mixed interval-censored failure time data. Such data frequently occur across a variety of settings, including clinical trials, epidemiologic investigations, and many other biomedical studies with a follow-up component. For example, mixed failure times are commonly found in the two largest studies of long-term survivorship after childhood cancer, the datasets that motivated this work. However, most existing methods for failure time data consider only right-censored or only interval-censored failure times, not the more general case where times may be mixed. Additionally, among regression models developed for mixed interval-censored failure times, the proportional hazards formulation is generally assumed. It is well-known that the proportional hazards model may be inappropriate in certain situations, and alternatives are needed to analyze mixed failure time data in such cases. To fill this need, we develop a maximum likelihood estimation procedure for the proportional odds regression model with mixed interval-censored data. We show that the resulting estimators are consistent and asymptotically Gaussian. An extensive simulation study is performed to assess the finite-sample properties of the method, and this investigation indicates that the proposed method works well for many practical situations. We then apply our approach to examine the impact of age at cranial radiation therapy on risk of growth hormone deficiency in long-term survivors of childhood cancer.  相似文献   

2.
The maximum likelihood estimator (MLE) for the survival function STunder the proportional hazards model of censorship is derived and shown to differ from the Abdushukurov-Cheng-Lin estimator when the class of allowable distributions includes all continuous and discrete distributions. The estimators are compared via an example. The MLE is calculated using a Newton-Raphson iterative procedure and implemented via a FORTRAN algorithm.  相似文献   

3.
The testing of the stratum effects in the Cox model is an important and commonly asked question in medical research as well as in many other fields. In this paper, we will discuss the problem where one observes interval-censored failure time data and generalize the procedure given in Sun and Yang (2000 Sun, J., and I. Yang. 2000. Nonparametric test for stratum effects in the cox model. Lifetime Data Analysis 6:32130.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]) for right-censored data. The asymptotic distribution of the new test statistic is established and the simulation study conducted for the evaluation of the finite sample properties of the method suggests that the generalized procedure seems to work well for practical situations. An application is provided.  相似文献   

4.
ABSTRACT

Competing risks data are common in medical research in which lifetime of individuals can be classified in terms of causes of failure. In survival or reliability studies, it is common that the patients (objects) are subjected to both left censoring and right censoring, which is refereed as double censoring. The analysis of doubly censored competing risks data in presence of covariates is the objective of this study. We propose a proportional hazards model for the analysis of doubly censored competing risks data, using the hazard rate functions of Gray (1988 Gray, R.J. (1988). A class of k-sample tests for comparing the cumulative incidence of a competing risk. Ann. Statist. 16:11411154.[Crossref], [Web of Science ®] [Google Scholar]), while focusing upon one major cause of failure. We derive estimators for regression parameter vector and cumulative baseline cause specific hazard rate function. Asymptotic properties of the estimators are discussed. A simulation study is conducted to assess the finite sample behavior of the proposed estimators. We illustrate the method using a real life doubly censored competing risks data.  相似文献   

5.
There has been extensive interest in discussing inference methods for survival data when some covariates are subject to measurement error. It is known that standard inferential procedures produce biased estimation if measurement error is not taken into account. With the Cox proportional hazards model a number of methods have been proposed to correct bias induced by measurement error, where the attention centers on utilizing the partial likelihood function. It is also of interest to understand the impact on estimation of the baseline hazard function in settings with mismeasured covariates. In this paper we employ a weakly parametric form for the baseline hazard function and propose simple unbiased estimating functions for estimation of parameters. The proposed method is easy to implement and it reveals the connection between the naive method ignoring measurement error and the corrected method with measurement error accounted for. Simulation studies are carried out to evaluate the performance of the estimators as well as the impact of ignoring measurement error in covariates. As an illustration we apply the proposed methods to analyze a data set arising from the Busselton Health Study [Knuiman, M.W., Cullent, K.J., Bulsara, M.K., Welborn, T.A., Hobbs, M.S.T., 1994. Mortality trends, 1965 to 1989, in Busselton, the site of repeated health surveys and interventions. Austral. J. Public Health 18, 129–135].  相似文献   

6.
This article studies the absolute penalized convex function estimator in sparse and high-dimensional additive hazards model. Under such model, we assume that the failure time data are interval-censored and the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on some natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true parameters in the model. Some similar inequalities based on an extension of the restricted eigenvalue are also established. Under mild conditions, we prove that the compatibility and cone invertibility factors and the restricted eigenvalues are bounded from below by positive constants for time-dependent covariates.  相似文献   

7.
We consider efficient estimation of regression and association parameters jointly for bivariate current status data with the marginal proportional hazards model. Current status data occur in many fields including demographical studies and tumorigenicity experiments and several approaches have been proposed for regression analysis of univariate current status data. We discuss bivariate current status data and propose an efficient score estimation approach for the problem. In the approach, the copula model is used for joint survival function with the survival times assumed to follow the proportional hazards model marginally. Simulation studies are performed to evaluate the proposed estimates and suggest that the approach works well in practical situations. A real life data application is provided for illustration.  相似文献   

8.
To estimate model parameters from complex sample data. we apply maximum likelihood techniques to the complex sample data from the finite population, which is treated as a sample from an i nfinite superpopulation. General asymptotic distribution theory is developed and then applied to both logistic regression and discrete proportional hazards models. Data from the Lipid Research Clinics Program areused to illustrate each model, demonstrating the effects on inference of neglecting the sampling design during parameter estimation. These empirical results also shed light on the issue of model-based vs. design-based inferences.  相似文献   

9.
ABSTRACT

The generalized case-cohort design is widely used in large cohort studies to reduce the cost and improve the efficiency. Taking prior information of parameters into consideration in modeling process can further raise the inference efficiency. In this paper, we consider fitting proportional hazards model with constraints for generalized case-cohort studies. We establish a working likelihood function for the estimation of model parameters. The asymptotic properties of the proposed estimator are derived via the Karush-Kuhn-Tucker conditions, and their finite properties are assessed by simulation studies. A modified minorization-maximization algorithm is developed for the numerical calculation of the constrained estimator. An application to a Wilms tumor study demonstrates the utility of the proposed method in practice.  相似文献   

10.
The additive hazards model is one of the most commonly used regression models in the analysis of failure time data and many methods have been developed for its inference in various situations. However, no established estimation procedure exists when there are covariates with missing values and the observed responses are interval-censored; both types of complications arise in various settings including demographic, epidemiological, financial, medical and sociological studies. To address this deficiency, we propose several inverse probability weight-based and reweighting-based estimation procedures for the situation where covariate values are missing at random. The resulting estimators of regression model parameters are shown to be consistent and asymptotically normal. The numerical results that we report from a simulation study suggest that the proposed methods work well in practical situations. An application to a childhood cancer survival study is provided. The Canadian Journal of Statistics 48: 499–517; 2020 © 2020 Statistical Society of Canada  相似文献   

11.
We consider the piecewise proportional hazards (PWPH) model with interval-censored (IC) relapse times under the distribution-free set-up. The partial likelihood approach is not applicable for IC data, and the generalized likelihood approach has not been studied in the literature. It turns out that under the PWPH model with IC data, the semi-parametric MLE (SMLE) of the covariate effect under the standard generalized likelihood may not be unique and may not be consistent. In fact, the parameter under the PWPH model with IC data is not identifiable unless the identifiability assumption is imposed. We propose a modification to the likelihood function so that its SMLE is unique. Under the identifiability assumption, our simulation study suggests that the SMLE is consistent. We apply the method to our cancer relapse time data and conclude that the bone marrow micrometastasis does not have a significant prognostic factor.  相似文献   

12.
13.
Unobservable individual effects in models of duration will cause estimation bias that include the structural parameters as well as the duration dependence. The maximum penalized likelihood estimator is examined as an estimator for the survivor model with heterogeneity. Proofs of the existence and uniqueness of the maximum penalized likelihood estimator in duration model with general forms of unobserved heterogeneity are provided. Some small sample evidence on the behavior of the maximum penalized likelihood estimator is given. The maximum penalized likelihood estimator is shown to be computationally feasible and to provide reasonable estimates in most cases.  相似文献   

14.
The asymptotic theory is given for quantile estimation in the proportional hazards model of random censorship. In this model, the tail of the censoring distribution function is some power of the tail of the survival distribution function. The quantile estimator is based on the maximum likelihood estimator for the survival time distribution, due to Abdushukurov, Cheng and Lin.  相似文献   

15.
The proportional hazards model is the most commonly used model in regression analysis of failure time data and has been discussed by many authors under various situations (Kalbfleisch & Prentice, 2002. The Statistical Analysis of Failure Time Data, Wiley, New York). This paper considers the fitting of the model to current status data when there exist competing risks, which often occurs in, for example, medical studies. The maximum likelihood estimates of the unknown parameters are derived and their consistency and convergence rate are established. Also we show that the estimates of regression coefficients are efficient and have asymptotically normal distributions. Simulation studies are conducted to assess the finite sample properties of the estimates and an illustrative example is provided. The Canadian Journal of Statistics © 2009 Statistical Society of Canada  相似文献   

16.
ABSTRACT

We investigated the empirical likelihood inference approach under a general class of semiparametric hazards regression models with survival data subject to right-censoring. An empirical likelihood ratio for the full 2p regression parameters involved in the model is obtained. We showed that it converged weakly to a random variable which could be written as a weighted sum of 2p independent chi-squared variables with one degree of freedom. Using this, we could construct a confidence region for parameters. We also suggested an adjusted version for the preceding statistic, whose limit followed a standard chi-squared distribution with 2p degrees of freedom.  相似文献   

17.
ABSTRACT

Many times, a product lifetime can be described through a non negative integer valued random variable. In this article, we propose a proportional hazards model for discrete data analogous to the version for continuous data. Some ageing properties of the model are discussed. Stochastic comparison of pair of random variables that follow the model are also made. A new test based on U-statistics is developed for testing that the proportionality parameter in the proposed model is 1. The asymptotic properties of the proposed test are studied. We present some numerical results to asses the performance of the test procedure.  相似文献   

18.
When variable selection with stepwise regression and model fitting are conducted on the same data set, competition for inclusion in the model induces a selection bias in coefficient estimators away from zero. In proportional hazards regression with right-censored data, selection bias inflates the absolute value of parameter estimate of selected parameters, while the omission of other variables may shrink coefficients toward zero. This paper explores the extent of the bias in parameter estimates from stepwise proportional hazards regression and proposes a bootstrap method, similar to those proposed by Miller (Subset Selection in Regression, 2nd edn. Chapman & Hall/CRC, 2002) for linear regression, to correct for selection bias. We also use bootstrap methods to estimate the standard error of the adjusted estimators. Simulation results show that substantial biases could be present in uncorrected stepwise estimators and, for binary covariates, could exceed 250% of the true parameter value. The simulations also show that the conditional mean of the proposed bootstrap bias-corrected parameter estimator, given that a variable is selected, is moved closer to the unconditional mean of the standard partial likelihood estimator in the chosen model, and to the population value of the parameter. We also explore the effect of the adjustment on estimates of log relative risk, given the values of the covariates in a selected model. The proposed method is illustrated with data sets in primary biliary cirrhosis and in multiple myeloma from the Eastern Cooperative Oncology Group.  相似文献   

19.
Lifetime Data Analysis - Left-truncated data are often encountered in epidemiological cohort studies, where individuals are recruited according to a certain cross-sectional sampling criterion....  相似文献   

20.
The authors propose methods based on the stratified Cox proportional hazards model that account for the fact that the data have been collected according to a complex survey design. The methods they propose are based on the theory of estimating equations in conjunction with empirical process theory. The authors also discuss issues concerning ignorable sampling design, and the use of weighted and unweighted procedures. They illustrate their methodology by an analysis of jobless spells in Statistics Canada's Survey of Labour and Income Dynamics. They discuss briefly problems concerning weighting, model checking, and missing or mismeasured data. They also identify areas for further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号