首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urbanization impacts on the structure and function of forested wetlands   总被引:3,自引:0,他引:3  
The exponential increase in population has fueled a significant demographic shift: 60% of the Earth's population will live in urban areas by 2030. While this population growth is significant in its magnitude, the ecological footprint of natural resource consumption and use required to sustain urban populations is even greater. The land use and cover changes accompanying urbanization (increasing human habitation coupled with resource consumption and extensive landscape modification) impacts natural ecosystems at multiple spatial scales. Because they generally occupy lower landscape positions and are linked to other ecosystems through hydrologic connections, the cascading effects of habitat alteration on watershed hydrology and nutrient cycling are particularly detrimental to wetland ecosystems. I reviewed literature relevant to these effects of urbanization on the structure and function of forested wetlands. Hydrologic changes caused by habitat fragmentation generally reduce species richness and abundance of plants, macroinvertebrates, amphibians, and birds with greater numbers of invasives and exotics. Reduction in soil saturation and lowered water tables result in greater nitrogen mineralization and nitrification in urban wetlands with higher probability of NO 3 export from the watershed. Depressional forested wetlands in urban areas can function as important sinks for sediments, nutrients, and metals. As urban ecosystems become the predominant human condition, there is a critical need for data specific to urban forested wetlands in order to better understand the role of these ecosystems on the landscape.  相似文献   

2.
Effects of urbanization on species richness: A review of plants and animals   总被引:5,自引:1,他引:4  
Many studies have described the effects of urbanization on species richness. These studies indicate that urbanization can increase or decrease species richness, depending on several variables. Some of these variables include: taxonomic group, spatial scale of analysis, and intensity of urbanization. Recent reviews of birds (the most-studied group) indicate that species richness decreases with increasing urbanization in most cases but produces no change or even increases richness in some studies. Here I expand beyond the bird studies by reviewing 105 studies on the effects of urbanization on the species richness of non-avian species: mammals, reptiles, amphibians, invertebrates and plants. For all groups, species richness tends to be reduced in areas with extreme urbanization (i.e., central urban core areas). However, the effects of moderate levels of urbanization (i.e., suburban areas) vary significantly among groups. Most of the plant studies (about 65%) indicate increasing species richness with moderate urbanization whereas only a minority of invertebrate studies (about 30%) and a very small minority of non-avian vertebrate studies (about 12%) show increasing species richness. Possible explanations for these results are discussed, including the importance of nonnative species importation, spatial heterogeneity, intermediate disturbance and scale as major factors influencing species richness.  相似文献   

3.

Urbanisation constitutes one of the most rapid human-induced environmental changes, developing at the expense of natural and semi-natural habitats. It often implies alterations of many abiotic and biotic factors and contributes to create new environmental conditions, including temperature, food resources, competition and predation. Despite increasing empirical evidence of intra-specific divergence in phenotypic traits (e.g., physiological, behavioural or morphological) between urban and rural individuals, such patterns have often remained disconnected from the underlying mechanisms involved. In the current study, we tested for divergence in functional morphological traits that are related to feeding ecology (i.e., bill morphology, body mass and condition) and/or to the locomotory performance in escaping from predators (i.e., wing, tarsus and tail morphology, body mass and condition) along a chronological gradient of urbanisation (old urban, recent urban and rural areas), using the New Zealand fantail, an endemic insectivorous passerine species. We found divergences in phenotypic traits related to bill morphology along the urban–rural gradient: birds inhabiting the old urban area had stubbier bills (i.e., shorter, deeper and wider bills) than those inhabiting the recent urban and rural areas. We did not detect any difference in locomotion-related morphological traits. Our results suggest the urbanisation-induced alteration in food resources may drive morphological divergence in bird populations. We emphasized the need for mechanistic and experimental studies, with a particular focus on resource-based mechanisms, to identify more precisely the morphological responses of urban populations to changes in food composition, and the resulting implications for communities in urban ecosystems.

  相似文献   

4.
Foraging decisions reflect a trade-off between the benefits of acquiring food and the costs of movement. Changes in the biotic and abiotic environment associated with urbanization can alter this trade-off and modify foraging decisions. We experimentally manipulated foraging opportunities for two Anolis lizard species – the brown anole (A. sagrei) in Florida and the crested anole (A. cristatellus) in Puerto Rico – to assess whether foraging behavior differs between habitats varying in their degree of urbanization. In both urban and natural forest habitats, we measured the latency of perched anoles to feed from an experimental feeding tray. We manipulated perch availability and predator presence, while also taking into account population (e.g., conspecific density) and individual-level factors (e.g., body temperature) to evaluate whether and how these contribute to between-habitat differences in foraging behavior. In both species, urban anoles had longer latencies to feed and lower overall response rates compared to lizards from forests. Urban anoles were also larger (i.e., snout-vent length and mass) in both species and urban A. sagrei were in better body condition than the natural forest population. We postulate that the observed patterns in foraging behavior are driven by differences in perceived predation risk, foraging motivation, or neophobia. Although we are unable to identify the mechanism(s) driving these differences, the substantial differences in urban versus forest anole foraging behavior emphasizes the importance of understanding how urbanization influences animal populations and their persistence in anthropogenically-modified environments.  相似文献   

5.
Identifying the relationships between species traits and patch-scale vegetation characteristics in areas designated for urban development can improve our understanding of how animal communities may change with urbanization. We explored the implications of this premise to the urban planning process in a mixed-use landscape in Canberra (Australia), prior to its development into new suburbs. We used RLQ analysis to relate bird foraging, nesting and body size traits to patch-scale vegetation characteristics. Relationships between species traits and vegetation characteristics within the development zone suggest that species that forage and nest on the ground and in the understory strata, and smaller-bodied species will be most negatively affected by urbanization. Identifying the relationships between species traits and vegetation characteristics may be used by urban planners to (i) identify potentially critical habitat and species at risk from development, (ii) inform the choice of impact mitigation measures, and/or (iii) distinguish between high and low mitigation measures. Analyses conducted early in the planning process can then be used to allocate proposed land uses in an ecologically sensitive way, and to plan appropriate mitigation measures.  相似文献   

6.
Urbanization is a pervasive and growing threat to amphibian populations globally. Although the number of studies is increasing, many aspects of basic amphibian biology have not been investigated in urban settings. We reviewed 32 urban studies from North America and quantified the number of species studied and their response to urbanization. We examined existing research on breeding habitats, life-history stages, movement patterns, and habitat use relative to urbanization. We found amphibians as a whole respond negatively to urbanization (69 reported responses were negative, 6 were positive and 35 showed no effect). We caution, however, that many North American species still lack or are associated with conflicting information regarding species-specific responses (e.g., 89 potential responses were unknown). Approximately 40% of all anuran and 14% of caudate species in North America were investigated in the literature; however, the most diverse genera (e.g., Plethodon and Eurycea) were the most understudied likely due to their cryptic terrestrial lifestyles and biases in sampling protocols that assess wetland habitats via call surveys. Research on movement and small scale habitat use was deficient. Adult, juvenile, tadpole, and egg mass life-history stages commonly served as direct measures of species presence and abundance; however, such data do not accurately reflect recruitment into subsequent age classes and population persistence. The lack of data on many North American species may be contributing to poor management of urban amphibian populations and their habitats.  相似文献   

7.
Saeki  Ikuyo  Niwa  Shigeru  Osada  Noriyuki  Azuma  Wakana  Hiura  Tsutom 《Urban Ecosystems》2020,23(3):603-614

Urbanization generally reduces wildlife populations. Individual species responses, however, are often highly variable, and such variability can be explained by differences in species ecological traits. To examine this hypothesis, we focused on two co-occurring land snails, Ezohelix gainesi and Euhadra brandtii sapporo; the former is ground-dwelling and the latter is arboreal. We first estimated their population densities at nine sites distributed along an urbanization gradient: three were located in continuous natural forests, three at the edge of natural forests, and the rest in small isolated forests in urban areas. As a result, the ground-dwelling E. gainesi occurred at highest density in urban forests, followed by forest edges and continuous forests. By contrast, the arboreal E. b. sapporo occurred at highest density in continuous forests, but declined in forest edges and urban forests. We then conducted manipulative field experiments to quantify changes in predation pressure on these species. Ground-tethered E. gainesi and E. b. sapporo were repeatedly predated upon by forest-living mammals in continuous forests, but their survival rates increased in forest edges and urban forests. By contrast, canopy-tethered E. b. sapporo maintained high survival rates in all three forest types. The results indicate that a lack of mammalian predators enables ground-dwelling species to occur at high densities in urban forests, whereas the arboreal species was not affected by this predator relaxation effect. The combination of species-specific behavioural traits and changes in predator communities across an urbanization gradient has important effects on the biodiversity of urban ecosystems.

  相似文献   

8.

The Neotropical region has been subjected to massive urbanization, which poses high risks for some global biodiversity hotspots and losses of ecosystem functions and services. In this study, we investigate how distance from large patches of native forests (source areas) and vegetation (green)/and infrastructure (gray) characteristics affect bird species richness and functional diversity in São Paulo megacity, southeastern Brazil. We analyzed the effects of source areas and green/gray characteristics on species richness and functional diversity (richness, evenness, and divergence) indices. We detected 231 bird species, and our data confirmed our predictions: (1) bird species richness in urbanized habitats was found to be (~?50–85%) lower than in source habitats; (2) species richness and trait composition significantly decreased as the distance from the source area increased, while functional richness was not affected by this metric; and (3) shrub and herbaceous covers and maximum height of trees were positively correlated with species richness and unique functional traits regarding habitat, diet, foraging and nesting strata and dispersal ability of birds in the forest-urban matrix. The number of buildings was negatively correlated with bird species richness and functional richness. Maximum height of buildings caused dramatic declines in functional evenness. Functional divergence was notably lower in sites with high shrub cover. Our study stresses the complexity of vegetation embedded in large Neotropical urban settlements and the need to maintain large protected areas surrounding megacities to mitigate the impacts of urbanization on birds.

  相似文献   

9.
Animal body sizes in urban areas often differ from nearby rural areas, which may impact population fitness and dynamics. We examined the effects of urbanization on larval body sizes of two species of salamanders, the two-lined salamander (Eurycea cirrigera) and the northern dusky salamander (Desmognathus fuscus). Specifically, we utilized a before-after control-impact (BACI) study design which allowed for the assessment of differences in larval body size between multiple control and impacted sites over a 5 year period. We found a decrease in larval body size in both species at the impacted sites compared to control sites in the first year after urbanization, followed by generally larger body sizes in urban sites compared to control sites in years 3–5, and significantly so in year 4. Using generalized linear models, we found support that larger body sizes post impact in urbanized streams may be due to warmer stream water temperature and decreased abundance of larvae. Both E. cirrigera and D. fuscus are well known for their ability to persist in urbanized streams; our data suggest that despite overall lower abundances in urban streams, persistence may be due to increases in larval body size and, potentially, post-metamorphic benefits.  相似文献   

10.
There is a need to study the effects of urbanization on wildlife in order to understand the ecological implications of increasing urbanization and find out how to reduce its threats to biodiversity. The blue tit evolved as a forest species and prefers deciduous and mixed forests, whereas its nesting in urban habitats is a more recent phenomenon. Our long-term study of blue tit populations has been conducted in two habitats: an urban parkland (frequently visited by people) and a deciduous forest outside of the city. Using linear mixed modeling, we revealed that a relationship of blue tit breeding success (and the number of fledglings) with thermal conditions in May differed between the urban parkland and the forest. While the relationship was positive in the forest, it was negative in the parkland. In addition, breeding success in the parkland increased with increasing number of rainy days in May. We argue that the main possible reason for such patterns is human activity in the parkland, which interferes with tit parental care, especially the regular feeding of nestlings, whereas it is evidently associated with weather conditions. Human disturbance in the forest is likely to be negligible.  相似文献   

11.
Urbanization creates new habitats with novel benefits and challenges not found in natural systems. How a species fares in urban habitats is largely dependent on its life history, yet predicting the response of individual species to urbanization remains a challenge. While some species thrive in urban areas, others do poorly or are not present at all. Mountain chickadees (Poecile gambeli) are year-round residents of montane regions of western North America. Commonly found in higher-elevation coniferous forests, these birds can also be found in urban areas where they will regularly visit bird feeders and nest in nest boxes. We monitored mountain chickadees nesting along a habitat gradient, from natural habitat to suburban areas, to determine if the degree of urbanization was associated with: clutch size and success; nestling growth rates; or variation in parental size and age. Females nesting in urbanized areas initiated clutches earlier in the breeding season than those in natural areas, but neither fledging success nor the rate of nestling mass-change differed between habitats. Nestling feather growth-rate increased with later first egg dates in both habitats, and the magnitude of this increase was greatest in urban habitats. We found no difference in the proportion of first-time breeders versus experienced breeders between habitat types, nor any differences in male or female mass or size. Our results indicate no detriment to nesting in urban habitats, suggesting mountain chickadees are able to adapt to moderate urbanization much like other members of the Paridae family.  相似文献   

12.
Urban areas are among the most affected by human activities. In Europe, urbanization has essentially occurred since the end of the 19th century. However, the influence of this dramatic process on aquatic ecosystems has rarely been quantified and analyzed using historical data. In this study, we investigate the evolution of the hydrological system and native aquatic macrophytes in urban areas between the end of the 19th century and the beginning of the 21st century. Four urban areas in Switzerland were chosen for the analyses, Zürich, Basel, Lausanne and Fribourg, and we analyzed the changes in aquatic plant diversity based on the historical and recent floristic data available for the same areas and the same time periods. Our results show that a significant proportion (~30 %) of aquatic habitats has disappeared from the investigated locales during the last 130 years and that the extinction rate of the aquatic plant species is notably higher in the studied cities (28 %) than in Switzerland as a whole (2 %). Thus, between the end of the 19th and the beginning of the 21st centuries, urban development in Swiss cities has prompted a degradation of aquatic habitats that resulted in a significant reduction of the aquatic biodiversity. However, our study shows that urban areas still have the capacity to shelter a large diversity of aquatic organisms, including some of the most threatened species. Thus, it is important to integrate urban areas in the conservation strategies for these species.  相似文献   

13.
Wildlife-human interactions are increasing in prevalence as urban sprawl continues to encroach into rural areas. Once considered to be unsuitable habitat for most wildlife species, urban/suburban areas now host an array of wildlife populations, many of which were previously restricted to rural or pristine habitats. The presence of some wildlife species in close proximity to dense human populations can create conflict, forcing resource managers to address issues relating to urban wildlife. However, evidence suggests that wildlife residing in urban areas may not exhibit the same life history traits as their rural counterparts because of adaptation to human-induced stresses. This creates difficulty for biologists or managers that must address problems associated with urban wildlife. Population control or mitigation efforts aimed at urban wildlife require detailed knowledge of the habits of wildlife populations in urban areas. This paper describes the history of wildlife in urban areas, provides examples of wildlife populations that have modified their behavior as an adaptation to urban stresses, and discusses the challenges that resource managers face when dealing with urban wildlife.  相似文献   

14.
Urban Ecosystems - Although amphibians use human-created habitats in urban landscapes, few studies have investigated the quality of these habitats. To assess habitat quality of stormwater...  相似文献   

15.
Plants in cities must cope with various anthropogenic environments that differ from surrounding landscapes. Moreover, the differences in biotic and abiotic conditions among these habitats filter species with suitable traits and niche requirements. Here we aim to identify those attributes that promote species occurrence across and within urban habitat types of large cities. Species composition of spontaneously occurring vascular plant species was recorded in 1-ha plots in seven different urban habitat types in each of 32 European cities. Each species was characterized in terms of dispersal type, growth form, height, seed bank longevity, seed mass, selected leaf traits and ecological indicators including Ellenberg indicator values, Grime’s life strategies, and immigration pathways using information from available species-trait databases. For each species, total frequency of occurrence across all plots and habitat frequency of occurrence across plots of given habitat types were calculated and regression trees were used to relate them to traits and ecological indicators. The most frequently occurring species in the cities tended to be human-dispersed, nutrient-demanding plants that prefer drier to mesic soil conditions. These species do not possess the S-strategy and usually produce seeds of low mass forming short-term persistent seed banks. Habitat-specific responses were also revealed, indicating the effects of between- and within-habitat heterogeneity on trends in species performance in cities. Such patterns can be overlooked when differences in species occurrences in particular urban habitat types are not considered; thus, habitat-specific responses can resolve inconsistencies found when whole urban floras are analysed as a whole.  相似文献   

16.
Data collected out of the breeding season suggest that House sparrows (Passer domesticus) from the urban populations are characterized by a smaller body size and poorer body condition compared to birds from rural populations. Considering an urbanized Eurasian Sparrowhawk (Accipiter nisus) and other potential predators, a new predator-prey dependency is developing that can also be a reason for the House sparrow’s poorer condition. This study was aimed at comparing the multivariate biometrical characteristics and few body condition indices of adult birds from urban and rural populations during the breeding season. It was hypothesized that a higher predation risk during the breeding season concerns mainly males, thus affecting their poorer condition. Most of the condition indices of males were significantly lower in the urban population. Males from the urban populations had lower body mass, shorter tarsus, longer alula, greater Kipp’s distance and higher wing pointedness index in comparison to the birds from rural populations, whereas these differences were not found between females. We suggest that the lower body condition and biometric differences in the analyzed birds are a means of adapting to the new predator-prey scheme in accordance to the tradeoff theory between starvation and predation risks. A lower condition of birds in poor foraging urban habitats and higher predation risk may be indicative of a declining population.  相似文献   

17.
Human migration to urban centers has resulted in diverse environmental disturbances that affect biodiversity. Although urbanization has been highlighted as one of the main drivers of biodiversity endangerment, this topic is still poorly studied in many countries. In order to establish the status quo of the ecology of butterflies in urban centers, we gathered publications focused on urban butterflies (Lepidoptera). We compiled a total of 173 studies from 37 countries and more than 110 urban areas, including published papers and theses (1956–2015). Most papers (69 %) addressed ecological topics, 14 % were focused on biological conservation, and 17 % corresponded to species lists. In summary, most studies revealed a negative impact of urbanization intensity on butterfly diversity (richness and abundance). In fact, we found studies reporting local extinctions due to urbanization, highlighting the causes related to them. The study of charismatic urban wildlife groups, such as butterflies, is a promising field, as there are still important gaps in our comprehension of the ecological patterns and processes that occur in urban areas. Undoubtedly, understanding the response of butterflies to urbanization will aid in the development of urban biodiversity management, planning, and conservation strategies worldwide, which together with knowledge of other wildlife groups and socioeconomic variables, will lead us to more sustainable, livable, and biodiverse cities.  相似文献   

18.
Management mitigates the impact of urbanization on meadow vegetation   总被引:1,自引:0,他引:1  
Urban regions often contain remnants of ecologically valuable habitats. Whilst meadow habitats have been recognized as ecologically important and much studied, little attention has been given to meadow assemblages of urban locations. We studied the effects of meadow type, urbanization level, and management on vascular plant species richness, field layer diversity and soil chemistry in 18 grassland sites in the Helsinki Metropolitan Area (60°E, 25°N), on the southern coast of Finland during the summer of 2007. We recorded a total of 252 species, though the average number of species per m2 was only 12.6. The negative effects of urbanization on forbs seemed to result in particular from increased soil nitrate (NO3- -N) concentration. The highest NO3- -N and Fe concentrations and ratios of total inorganic nitrogen (Ntot) to phosphorus (P) and potassium (K), were recorded from the soils of urban rocky meadows. Management by mowing decreased soil NO3- -N and Fe concentrations, ratios of Ntot:P and Ntot:K, and increased species richness and diversity. Elevated NOx deposition is considered as a major driver of urbanization effects on vegetation, though changes in soil pH and metal concentrations, such as zinc (Zn), may also negatively affect the frequency of both forbs and grasses. This study shows that regular management by mowing and removal of hay mitigates these effects. We also recommend increasing the provision of dry meadows and maintaining more areas of supplementary semi-natural grassland habitats in urban green space as concrete measures for the conservation of dry meadow assemblages and urban biodiversity.  相似文献   

19.
Urban development leads to changes in habitat structure and resource base. Bird communities are known to respond sharply to such changes. Our result from study of bird community along urbanization gradient around Kolkata metropolitan city clearly separated the urban bird community from the rural and rural 3 habitats in terms of species diversity and foraging groups. Rural and rural 3 sites had more number of rare species and higher percentage of unique species as compared to the urban habitats. Functional group analysis showed higher abundance of granivores in urban habitats and absence of insectivore and carnivorous species that were found in the rural and rural 3 habitats. The bird species assemblage along the gradient was significantly nested where bird species recorded in urban areas were subset of the species rich rural areas. There was no difference in individual counts between urban and rural habitats, therefore nullifying the hypothesis that rural areas are more species rich because of higher population size. Bird community in the urban areas was less even as compared to the rural areas due to the dominance of omnivorous guild. Bird diversity was negatively correlated to the density of house lots.  相似文献   

20.
Urbanization leads to long-term modification of landscapes by habitat loss, fragmentation, and the creation of new habitats. Species’ distributions respond to these modifications of habitat availability, but the combination of parameters and scale at which habitat alteration most strongly influences species distributions is poorly understood. We evaluated responses of neotropical migratory birds, a group known to be sensitive to habitat modification, across a gradient of urbanization in the southeastern United States. Thirteen Breeding Bird Survey routes, each with 40 to 50 point counts, were used to quantify species richness across the gradient of urbanization extending from downtown areas of Columbus, GA to natural woodlands. Buffers of 100, 200, and 1000 m radii were constructed from remote images around each counting point to quantify land-use with the goal of evaluating land-use parameters and scales that best described spatial variation in migrant bird species richness. Within each buffer we quantified the proportion of each cover type and within the 1000 m buffers we included several configuration parameters. We used an information-theoretic approach to separate models whose predictor variables were land-use parameters. Because measures of landscape configuration were all correlated with urban cover, these variables were entered separately. In 2002, the best model was composed of large-scale urban cover (negative effect) and mid-scale mixed hardwoods (negative and positive effect) and transitional cover (negative and positive effect) as well as the interaction between the latter two terms (positive effect). In 2003, the best model was composed of weighted edge density (negative effect), mid-scale mixed hardwood cover (negative and positive effect) and large scale transitional cover (positive effect) and the interaction between mixed hardwoods and weighted edge density (positive effect). Our results indicate that large scale habitat attributes influence the local species richness of migrant birds more than smaller scales. These results also indicate that urbanization, through increased urban cover or increasing edge contrast, has strong negative effects on species richness. Our findings support the contention that the conservation value of small woodlots in urban settings may be minimal and suggest that conservation of migratory birds will be best achieved by giving higher priority to sites where urban cover is still low and by preserving large areas of “green space” in urbanizing landscapes. The negative influence of urban cover combined with relatively minor effects of non-urban habitats on distributions of neotropical migratory birds indicates that continued urbanization of landscapes is a serious concern for conservation efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号