首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequential regression multiple imputation has emerged as a popular approach for handling incomplete data with complex features. In this approach, imputations for each missing variable are produced based on a regression model using other variables as predictors in a cyclic manner. Normality assumption is frequently imposed for the error distributions in the conditional regression models for continuous variables, despite that it rarely holds in real scenarios. We use a simulation study to investigate the performance of several sequential regression imputation methods when the error distribution is flat or heavy tailed. The methods evaluated include the sequential normal imputation and its several extensions which adjust for non normal error terms. The results show that all methods perform well for estimating the marginal mean and proportion, as well as the regression coefficient when the error distribution is flat or moderately heavy tailed. When the error distribution is strongly heavy tailed, all methods retain their good performances for the mean and the adjusted methods have robust performances for the proportion; but all methods can have poor performances for the regression coefficient because they cannot accommodate the extreme values well. We caution against the mechanical use of sequential regression imputation without model checking and diagnostics.  相似文献   

2.
Using Monte Carlo methods, the properties of systemwise generalisations of the Breusch-Godfrey test for autocorrelated errors are studied in situations when the error terms follow either normal or non-normal distributions, and when these errors follow either AR(1) or MA(1) processes. Edgerton and Shukur (1999) studied the properties of the test using normally distributed error terms and when these errors follow an AR(1) process. When the errors follow a non-normal distribution, the performances of the tests deteriorate especially when the tails are very heavy. The performances of the tests become better (as in the case when the errors are generated by the normal distribution) when the errors are less heavy tailed.  相似文献   

3.
The purpose of this paper is to survey many of the methods for estimating extreme right tail-area quantiles in order to determine which method or methods gives the best approximations. The problem is to find a good estimate of xp defined by 1 - F(x p) = p where p is a very small number for a random sample from an unknown distribution. An extension of this problem is to determine the number of largest order statistics that should be used to make an estimate. From extensive computer simulations trying to minimize relative error, conclusions can be drawn based on the value of p. For p = .02, the exponential tail method by Breiman, et al using a method by Pickands for determining the number of order statistics to use works best for light to heavy tailed distributions. For extremely heavy tailed distributions, a method proposed by Hosking and Wallis seems to be the most accurate at p = .02 and p = .002. The quadratic tail method by Breiman, et al appears best for light to moderately heavy tailed distributions at p = .002 and for all distributions at p = .0002.  相似文献   

4.
By assuming that the underlying distribution belongs to the domain of attraction of an extreme value distribution, one can extrapolate the data to a far tail region so that a rare event can be predicted. However, when the distribution is in the domain of attraction of a Gumbel distribution, the extrapolation is quite limited generally in comparison with a heavy tailed distribution. In view of this drawback, a Weibull tailed distribution has been studied recently. Some methods for choosing the sample fraction in estimating the Weibull tail coefficient and some bias reduction estimators have been proposed in the literature. In this paper, we show that the theoretical optimal sample fraction does not exist and a bias reduction estimator does not always produce a smaller mean squared error than a biased estimator. These are different from using a heavy tailed distribution. Further we propose a refined class of Weibull tailed distributions which are more useful in estimating high quantiles and extreme tail probabilities.  相似文献   

5.
Abstract

Analogs of the classical one way MANOVA model have recently been suggested that do not assume that population covariance matrices are equal or that the error vector distribution is known. These tests are based on the sample mean and sample covariance matrix corresponding to each of the p populations. We show how to extend these tests using other measures of location such as the trimmed mean or coordinatewise median. These new bootstrap tests can have some outlier resistance, and can perform better than the tests based on the sample mean if the error vector distribution is heavy tailed.  相似文献   

6.
Naranjo and HeUmansperger (1994) recently derved a bounded influence rank regression method and suggested how hypotheses about the regression coefficients might be tested. This brief note reports some simulation results on how their procedure performs when there is one predictor. Even when the error term is highly skewed, good control over the Type I error probability is obtained Power can be high relative to least squares regression when the error term has a heavy tailed distribution .and the predictor has a symmetric distribution However, if the predictor has a skewed distribution, power can be relatively low even when the distribution of the error term is heavy tailed. Despite this, it is argued that their method provides an important and useful alternative to ordinary least squares as well as other robust regression methods.  相似文献   

7.
It is often critical to accurately model the upper tail behaviour of a random process. Nonparametric density estimation methods are commonly implemented as exploratory data analysis techniques for this purpose and can avoid model specification biases implied by using parametric estimators. In particular, kernel-based estimators place minimal assumptions on the data, and provide improved visualisation over scatterplots and histograms. However kernel density estimators can perform poorly when estimating tail behaviour above a threshold, and can over-emphasise bumps in the density for heavy tailed data. We develop a transformation kernel density estimator which is able to handle heavy tailed and bounded data, and is robust to threshold choice. We derive closed form expressions for its asymptotic bias and variance, which demonstrate its good performance in the tail region. Finite sample performance is illustrated in numerical studies, and in an expanded analysis of the performance of global climate models.  相似文献   

8.
Classical methods based on Gaussian likelihood or least-squares cannot identify non-invertible moving average processes, while recent non-Gaussian results are based on full likelihood consideration. Since the error distribution is rarely known a quasi-likelihood approach is desirable, but its consistency properties are yet unknown. In this paper we study the quasi-likelihood associated with the Laplacian model, a convenient non-Gaussian model that yields a modified L 1 procedure. We show that consistency holds for all standard heavy tailed errors, but not for light tailed errors, showing that a quasi-likelihood procedure cannot be applied blindly to estimate non-invertible models. This is an interesting contrast to the standard results of the quasi-likelihood in regression models, where consistency usually holds much more generally. Similar results hold for estimation of non-causal non-invertible ARMA processes. Various simulation studies are presented to validate the theory and to show the effect of the error distribution, and an analysis of the US unemployment series is given as an illustration.  相似文献   

9.
We propose a robust estimation procedure for the analysis of longitudinal data including a hidden process to account for unobserved heterogeneity between subjects in a dynamic fashion. We show how to perform estimation by an expectation–maximization-type algorithm in the hidden Markov regression literature. We show that the proposed robust approaches work comparably to the maximum-likelihood estimator when there are no outliers and the error is normal and outperform it when there are outliers or the error is heavy tailed. A real data application is used to illustrate our proposal. We also provide details on a simple criterion to choose the number of hidden states.  相似文献   

10.
Linear regression models are useful statistical tools to analyze data sets in different fields. There are several methods to estimate the parameters of a linear regression model. These methods usually perform under normally distributed and uncorrelated errors. If error terms are correlated the Conditional Maximum Likelihood (CML) estimation method under normality assumption is often used to estimate the parameters of interest. The CML estimation method is required a distributional assumption on error terms. However, in practice, such distributional assumptions on error terms may not be plausible. In this paper, we propose to estimate the parameters of a linear regression model with autoregressive error term using Empirical Likelihood (EL) method, which is a distribution free estimation method. A small simulation study is provided to evaluate the performance of the proposed estimation method over the CML method. The results of the simulation study show that the proposed estimators based on EL method are remarkably better than the estimators obtained from CML method in terms of mean squared errors (MSE) and bias in almost all the simulation configurations. These findings are also confirmed by the results of the numerical and real data examples.  相似文献   

11.

For comparing several logistic regression slopes to that of a control for small sample sizes, Dasgupta et al. (2001) proposed an "asymptotic" small-sample test and a "pivoted" version of that test statistic. Their results show both methods perform well in terms of Type I error control and marginal power when the response is related to the explanatory variable via a logistic regression model. This study finds, via Monte Carlo simulations, that when the underlying relationship is probit, complementary log-log, linear, or even non-monotonic, the "asymptotic" and the "pivoted" small-sample methods perform fairly well in terms of Type I error control and marginal power. Unlike their large sample competitors, they are generally robust to departures from the logistic regression model.  相似文献   

12.
Moderated multiple regression provides a useful framework for understanding moderator variables. These variables can also be examined within multilevel datasets, although the literature is not clear on the best way to assess data for significant moderating effects, particularly within a multilevel modeling framework. This study explores potential ways to test moderation at the individual level (level one) within a 2-level multilevel modeling framework, with varying effect sizes, cluster sizes, and numbers of clusters. The study examines five potential methods for testing interaction effects: the Wald test, F-test, likelihood ratio test, Bayesian information criterion (BIC), and Akaike information criterion (AIC). For each method, the simulation study examines Type I error rates and power. Following the simulation study, an applied study uses real data to assess interaction effects using the same five methods. Results indicate that the Wald test, F-test, and likelihood ratio test all perform similarly in terms of Type I error rates and power. Type I error rates for the AIC are more liberal, and for the BIC typically more conservative. A four-step procedure for applied researchers interested in examining interaction effects in multi-level models is provided.  相似文献   

13.
Several methods are available for generating confidence intervals for rate difference, rate ratio, or odds ratio, when comparing two independent binomial proportions or Poisson (exposure‐adjusted) incidence rates. Most methods have some degree of systematic bias in one‐sided coverage, so that a nominal 95% two‐sided interval cannot be assumed to have tail probabilities of 2.5% at each end, and any associated hypothesis test is at risk of inflated type I error rate. Skewness‐corrected asymptotic score methods have been shown to have superior equal‐tailed coverage properties for the binomial case. This paper completes this class of methods by introducing novel skewness corrections for the Poisson case and for odds ratio, with and without stratification. Graphical methods are used to compare the performance of these intervals against selected alternatives. The skewness‐corrected methods perform favourably in all situations—including those with small sample sizes or rare events—and the skewness correction should be considered essential for analysis of rate ratios. The stratified method is found to have excellent coverage properties for a fixed effects analysis. In addition, another new stratified score method is proposed, based on the t‐distribution, which is suitable for use in either a fixed effects or random effects analysis. By using a novel weighting scheme, this approach improves on conventional and modern meta‐analysis methods with weights that rely on crude estimation of stratum variances. In summary, this paper describes methods that are found to be robust for a wide range of applications in the analysis of rates.  相似文献   

14.
One of the most popular methods and algorithms to partition data to k clusters is k-means clustering algorithm. Since this method relies on some basic conditions such as, the existence of mean and finite variance, it is unsuitable for data that their variances are infinite such as data with heavy tailed distribution. Pitman Measure of Closeness (PMC) is a criterion to show how much an estimator is close to its parameter with respect to another estimator. In this article using PMC, based on k-means clustering, a new distance and clustering algorithm is developed for heavy tailed data.  相似文献   

15.
Nonparametric models with jump points have been considered by many researchers. However, most existing methods based on least squares or likelihood are sensitive when there are outliers or the error distribution is heavy tailed. In this article, a local piecewise-modal method is proposed to estimate the regression function with jump points in nonparametric models, and a piecewise-modal EM algorithm is introduced to estimate the proposed estimator. Under some regular conditions, the large-sample theory is established for the proposed estimators. Several simulations are presented to evaluate the performances of the proposed method, which shows that the proposed estimator is more efficient than the local piecewise-polynomial regression estimator in the presence of outliers or heavy tail error distribution. What is more, the proposed procedure is asymptotically equivalent to the local piecewise-polynomial regression estimator under the assumption that the error distribution is a Gaussian distribution. The proposed method is further illustrated via the sea-level pressures.  相似文献   

16.
In this paper, we compare five asymptotically, under a correctly specified likelihood, equivalent estimators of the standard errors for parameters in structural equation models. The estimators are evaluated under different conditions regarding (i) sample size, varying between N=50 and 3200, (ii) distributional assumption of the latent variables and the disturbance terms, namely normal, and heavy tailed (t), and (iii) the complexity of the model. For the assessment of the five estimators we use overall performance, relative bias, MSE and coverage of confidence intervals. The analysis reveals substantial differences in the performance of the five asymptotically equal estimators. Most diversity was found for t distributed, i.e. heavy tailed, data.  相似文献   

17.
To capture mean and variance asymmetries and time‐varying volatility in financial time series, we generalize the threshold stochastic volatility (THSV) model and incorporate a heavy‐tailed error distribution. Unlike existing stochastic volatility models, this model simultaneously accounts for uncertainty in the unobserved threshold value and in the time‐delay parameter. Self‐exciting and exogenous threshold variables are considered to investigate the impact of a number of market news variables on volatility changes. Adopting a Bayesian approach, we use Markov chain Monte Carlo methods to estimate all unknown parameters and latent variables. A simulation experiment demonstrates good estimation performance for reasonable sample sizes. In a study of two international financial market indices, we consider two variants of the generalized THSV model, with US market news as the threshold variable. Finally, we compare models using Bayesian forecasting in a value‐at‐risk (VaR) study. The results show that our proposed model can generate more accurate VaR forecasts than can standard models.  相似文献   

18.
The aim of this work is to develop a test to distinguish between heavy and super-heavy tailed probability distributions. These classes of distributions are relevant in areas such as telecommunications and insurance risk, among others. By heavy tailed distributions we mean probability distribution functions with polynomially decreasing upper tails (regularly varying tails). The term super-heavy is reserved for right tails decreasing to zero at a slower rate, such as logarithmic, or worse (slowly varying tails). Simulations are presented for several models and an application with telecommunications data is provided.  相似文献   

19.
Many robust tests for the equality of variances have been proposed recently. Brown and Forsythe (1974) and Layard (1973) review some of the well-known procedures and compare them by simulation methods. Brown and Forsythe’s alternative formulation of Levene’s test statistic is found to be quite robust under certain nonnormal distributions. The performance of the methods, however, suffers in the presence of heavy tailed distributions such as the Cauchy distribution.

In this paper, we propose and study a simple robust test. The results obtained from the Monte Carlo study compare favorably with those of the existing procedures.  相似文献   

20.
A consistent test for difference in locations between two bivariate populations is proposed, The test is similar as the Mann-Whitney test and depends on the exceedances of slopes of the two samples where slope for each sample observation is computed by taking the ratios of the observed values. In terms of the slopes, it reduces to a univariate problem, The power of the test has been compared with those of various existing tests by simulation. The proposed test statistic is compared with Mardia's(1967) test statistics, Peters-Randies(1991) test statistic, Wilcoxon's rank sum test. statistic and Hotelling' T2 test statistic using Monte Carlo technique. It performs better than other statistics compared for small differences in locations between two populations when underlying population is population 7(light tailed population) and sample size 15 and 18 respectively. When underlying population is population 6(heavy tailed population) and sample sizes are 15 and 18 it performas better than other statistic compared except Wilcoxon's rank sum test statistics for small differences in location between two populations. It performs better than Mardia's(1967) test statistic for large differences in location between two population when underlying population is bivariate normal mixture with probability p=0.5, population 6, Pearson type II population and Pearson type VII population for sample size 15 and 18 .Under bivariate normal population it performs as good as Mardia' (1967) test statistic for small differences in locations between two populations and sample sizes 15 and 18. For sample sizes 25 and 28 respectively it performs better than Mardia's (1967) test statistic when underlying population is population 6, Pearson type II population and Pearson type VII population  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号