首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LetF(x,y) be a distribution function of a two dimensional random variable (X,Y). We assume that a distribution functionF x(x) of the random variableX is known. The variableX will be called an auxiliary variable. Our purpose is estimation of the expected valuem=E(Y) on the basis of two-dimensional simple sample denoted by:U=[(X 1, Y1)…(Xn, Yn)]=[X Y]. LetX=[X 1X n]andY=[Y 1Y n].This sample is drawn from a distribution determined by the functionF(x,y). LetX (k)be the k-th (k=1, …,n) order statistic determined on the basis of the sampleX. The sampleU is truncated by means of this order statistic into two sub-samples: % MathType!End!2!1! and % MathType!End!2!1!.Let % MathType!End!2!1! and % MathType!End!2!1! be the sample means from the sub-samplesU k,1 andU k,2, respectively. The linear combination % MathType!End!2!1! of these means is the conditional estimator of the expected valuem. The coefficients of this linear combination depend on the distribution function of auxiliary variable in the pointx (k).We can show that this statistic is conditionally as well as unconditionally unbiased estimator of the averagem. The variance of this estimator is derived. The variance of the statistic % MathType!End!2!1! is compared with the variance of the order sample mean. The generalization of the conditional estimation of the mean is considered, too.  相似文献   

2.
Letx i(1)≤x i(2)≤…≤x i(ri) be the right-censored samples of sizesn i from theith exponential distributions $\sigma _i^{ - 1} exp\{ - (x - \mu _i )\sigma _i^{ - 1} \} ,i = 1,2$ where μi and σi are the unknown location and scale parameters respectively. This paper deals with the posteriori distribution of the difference between the two location parameters, namely μ21, which may be represented in the form $\mu _2 - \mu _1 \mathop = \limits^\mathcal{D} x_{2(1)} - x_{1(1)} + F_1 \sin \theta - F_2 \cos \theta $ where $\mathop = \limits^\mathcal{D} $ stands for equal in distribution,F i stands for the central F-variable with [2,2(r i?1)] degrees of freedom and $\tan \theta = \frac{{n_2 s_{x1} }}{{n_1 s_{x2} }}, s_{x1} = (r_1 - 1)^{ - 1} \left\{ {\sum\limits_{j = 1}^{r_i - 1} {(n_i - j)(x_{i(j + 1)} - x_{i(j)} )} } \right\}$ The paper also derives the distribution of the statisticV=F 1 sin σ?F 2 cos σ and tables of critical values of theV-statistic are provided for the 5% level of significance and selected degrees of freedom.  相似文献   

3.
The Double Chain Markov Model (DCMM) is used to model an observable process $Y = \{Y_{t}\}_{t=1}^{T}$ as a Markov chain with transition matrix, $P_{x_{t}}$ , dependent on the value of an unobservable (hidden) Markov chain $\{X_{t}\}_{t=1}^{T}$ . We present and justify an efficient algorithm for sampling from the posterior distribution associated with the DCMM, when the observable process Y consists of independent vectors of (possibly) different lengths. Convergence of the Gibbs sampler, used to simulate the posterior density, is improved by adding a random permutation step. Simulation studies are included to illustrate the method. The problem that motivated our model is presented at the end. It is an application to real data, consisting of the credit rating dynamics of a portfolio of financial companies where the (unobserved) hidden process is the state of the broader economy.  相似文献   

4.
Let \(\mathbb{N } = \{1, 2, 3, \ldots \}\) . Let \(\{X, X_{n}; n \in \mathbb N \}\) be a sequence of i.i.d. random variables, and let \(S_{n} = \sum _{i=1}^{n}X_{i}, n \in \mathbb N \) . Then \( S_{n}/\sqrt{n} \Rightarrow N(0, \sigma ^{2})\) for some \(\sigma ^{2} < \infty \) whenever, for a subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/\sqrt{n_{k}} \Rightarrow N(0, \sigma ^{2})\) . Motivated by this result, we study the central limit theorem along subsequences of sums of i.i.d. random variables when \(\{\sqrt{n}; n \in \mathbb N \}\) is replaced by \(\{\sqrt{na_{n}};n \in \mathbb N \}\) with \(\lim _{n \rightarrow \infty } a_{n} = \infty \) . We show that, for given positive nondecreasing sequence \(\{a_{n}; n \in \mathbb N \}\) with \(\lim _{n \rightarrow \infty } a_{n} = \infty \) and \(\lim _{n \rightarrow \infty } a_{n+1}/a_{n} = 1\) and given nondecreasing function \(h(\cdot ): (0, \infty ) \rightarrow (0, \infty )\) with \(\lim _{x \rightarrow \infty } h(x) = \infty \) , there exists a sequence \(\{X, X_{n}; n \in \mathbb N \}\) of symmetric i.i.d. random variables such that \(\mathbb E h(|X|) = \infty \) and, for some subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/\sqrt{n_{k}a_{n_{k}}} \Rightarrow N(0, 1)\) . In particular, for given \(0 < p < 2\) and given nondecreasing function \(h(\cdot ): (0, \infty ) \rightarrow (0, \infty )\) with \(\lim _{x \rightarrow \infty } h(x) = \infty \) , there exists a sequence \(\{X, X_{n}; n \in \mathbb N \}\) of symmetric i.i.d. random variables such that \(\mathbb E h(|X|) = \infty \) and, for some subsequence \(\{n_{k}; k \in \mathbb N \}\) of \(\mathbb N \) , \( S_{n_{k}}/n_{k}^{1/p} \Rightarrow N(0, 1)\) .  相似文献   

5.
Given a stationary multidimensional spatial process $\left\{ Z_{\mathbf{i}}=\left( X_{\mathbf{i}},\ Y_{\mathbf{i}}\right) \in \mathbb R ^d\right. \left. \times \mathbb R ,\mathbf{i}\in \mathbb Z ^{N}\right\} $ , we investigate a kernel estimate of the spatial conditional mode function of the response variable $Y_{\mathbf{i}}$ given the explicative variable $X_{\mathbf{i}}$ . Consistency in $L^p$ norm and strong convergence of the kernel estimate are obtained when the sample considered is a $\alpha $ -mixing sequence. An application to real data is given in order to illustrate the behavior of our methodology.  相似文献   

6.
7.
The general Gauss–Markov model, Y = e, E(e) = 0, Cov(e) = σ 2 V, has been intensively studied and widely used. Most studies consider covariance matrices V that are nonsingular but we focus on the most difficult case wherein C(X), the column space of X, is not contained in C(V). This forces V to be singular. Under this condition there exist nontrivial linear functions of Q that are known with probability 1 (perfectly) where ${C(Q)=C(V)^\perp}$ . To treat ${C(X) \not \subset C(V)}$ , much of the existing literature obtains estimates and tests by replacing V with a pseudo-covariance matrix T = V + XUX′ for some nonnegative definite U such that ${C(X) \subset C(T)}$ , see Christensen (Plane answers to complex questions: the theory of linear models, 2002, Chap. 10). We find it more intuitive to first eliminate what is known about and then to adjust X while keeping V unchanged. We show that we can decompose β into the sum of two orthogonal parts, β = β 0 + β 1, where β 0 is known. We also show that the unknown component of X β is ${X\beta_1 \equiv \tilde{X} \gamma}$ , where ${C(\tilde{X})=C(X)\cap C(V)}$ . We replace the original model with ${Y-X\beta_0=\tilde{X}\gamma+e}$ , E(e) = 0, ${Cov(e)=\sigma^2V}$ and perform estimation and tests under this new model for which the simplifying assumption ${C(\tilde{X}) \subset C(V)}$ holds. This allows us to focus on the part of that parameters that are not known perfectly. We show that this method provides the usual estimates and tests.  相似文献   

8.
For the counting process N={N(t), t≥0} and the probability that a device survives the first k shocks \(\bar P_k \) , the probability that the device survives beyond t that is \(\bar H(t) = \sum\limits_{k = 0}^\omega {P(N(t) = k)} \bar P_k \) is considered. The survival \(\bar H(t)\) is proved to have the new better (worse) than used renewal failure rate and the new better (worse) than average failure rate properties under, some conditions on N and \((\bar P_k )_{k = \rho }^\omega \) . In particular we study the survival probability when N is a nonhomogeneous Poisson process or birth process. Acumulative damage model and Laplace transform characterization for properties are investigated. Further the generating functions for these renewal failure rates properties are given.  相似文献   

9.
Given a random sample of size \(n\) with mean \(\overline{X} \) and standard deviation \(s\) from a symmetric distribution \(F(x; \mu , \sigma ) = F_{0} (( x- \mu ) / \sigma ) \) with \(F_0\) known, and \(X \sim F(x;\; \mu , \sigma )\) independent of the sample, we show how to construct an expansion \( a_n^{\prime } = \sum _{i=0}^\infty \ c_i \ n^{-i} \) such that \(\overline{X} - s a_n^{\prime } < X < \overline{X} + s a_n^{\prime } \) with a given probability \(\beta \) . The practical value of this result is illustrated by simulation and using a real data set.  相似文献   

10.
In this paper we introduce the distribution of , with c >  0, where X i , i =  1, 2, are independent generalized beta-prime-distributed random variables, and establish a closed form expression of its density. This distribution has as its limiting case the generalized beta type I distribution recently introduced by Nadarajah and Kotz (2004). Due to the presence of several parameters the density can take a wide variety of shapes.   相似文献   

11.
Let [^(\varveck)]{\widehat{\varvec{\kappa}}} and [^(\varveck)]r{\widehat{\varvec{\kappa}}_r} denote the best linear unbiased estimators of a given vector of parametric functions \varveck = \varvecKb{\varvec{\kappa} = \varvec{K\beta}} in the general linear models M = {\varvecy, \varvecX\varvecb, s2\varvecV}{{\mathcal M} = \{\varvec{y},\, \varvec{X\varvec{\beta}},\, \sigma^2\varvec{V}\}} and Mr = {\varvecy, \varvecX\varvecb | \varvecR \varvecb = \varvecr, s2\varvecV}{{\mathcal M}_r = \{\varvec{y},\, \varvec{X}\varvec{\beta} \mid \varvec{R} \varvec{\beta} = \varvec{r},\, \sigma^2\varvec{V}\}}, respectively. A bound for the Euclidean distance between [^(\varveck)]{\widehat{\varvec{\kappa}}} and [^(\varveck)]r{\widehat{\varvec{\kappa}}_r} is expressed by the spectral distance between the dispersion matrices of the two estimators, and the difference between sums of squared errors evaluated in the model M{{\mathcal M}} and sub-restricted model Mr*{{\mathcal M}_r^*} containing an essential part of the restrictions \varvecR\varvecb = \varvecr{\varvec{R}\varvec{\beta} = \varvec{r}} with respect to estimating \varveck{\varvec{\kappa}}.  相似文献   

12.
We consider equalities between the ordinary least squares estimator ( $\mathrm {OLSE} $ ), the best linear unbiased estimator ( $\mathrm {BLUE} $ ) and the best linear unbiased predictor ( $\mathrm {BLUP} $ ) in the general linear model $\{ \mathbf y , \mathbf X \varvec{\beta }, \mathbf V \}$ extended with the new unobservable future value $ \mathbf y _{*}$ of the response whose expectation is $ \mathbf X _{*}\varvec{\beta }$ . Our aim is to provide some new insight and new proofs for the equalities under consideration. We also collect together various expressions, without rank assumptions, for the $\mathrm {BLUP} $ and provide new results giving upper bounds for the Euclidean norm of the difference between the $\mathrm {BLUP} ( \mathbf y _{*})$ and $\mathrm {BLUE} ( \mathbf X _{*}\varvec{\beta })$ and between the $\mathrm {BLUP} ( \mathbf y _{*})$ and $\mathrm {OLSE} ( \mathbf X _{*}\varvec{\beta })$ . A remark is made on the application to small area estimation.  相似文献   

13.
In this paper, by relaxing the mixing coefficients to α(n) = O(n ), β > 3, we investigate the Bahadur representation of sample quantiles under α-mixing sequence and obtain the rate as ${O(n^{-\frac{1}{2}}(\log\log n\cdot\log n)^{\frac{1}{2}})}$ . Meanwhile, for any δ > 0, by strengthening the mixing coefficients to α(n) = O(n ), ${\beta > \max\{3+\frac{5}{1+\delta},1+\frac{2}{\delta}\}}$ , we have the rate as ${O(n^{-\frac{3}{4}+\frac{\delta}{4(2+\delta)}}(\log\log n\cdot \log n)^{\frac{1}{2}})}$ . Specifically, if ${\delta=\frac{\sqrt{41}-5}{4}}$ and ${\beta > \frac{\sqrt{41}+7}{2}}$ , then the rate is presented as ${O(n^{-\frac{\sqrt{41}+5}{16}}(\log\log n\cdot \log n)^{\frac{1}{2}})}$ .  相似文献   

14.
Krämer (Sankhy $\bar{\mathrm{a }}$ 42:130–131, 1980) posed the following problem: “Which are the $\mathbf{y}$ , given $\mathbf{X}$ and $\mathbf{V}$ , such that OLS and Gauss–Markov are equal?”. In other words, the problem aimed at identifying those vectors $\mathbf{y}$ for which the ordinary least squares (OLS) and Gauss–Markov estimates of the parameter vector $\varvec{\beta }$ coincide under the general Gauss–Markov model $\mathbf{y} = \mathbf{X} \varvec{\beta } + \mathbf{u}$ . The problem was later called a “twist” to Kruskal’s Theorem, which provides conditions necessary and sufficient for the OLS and Gauss–Markov estimates of $\varvec{\beta }$ to be equal. The present paper focuses on a similar problem to the one posed by Krämer in the aforementioned paper. However, instead of the estimation of $\varvec{\beta }$ , we consider the estimation of the systematic part $\mathbf{X} \varvec{\beta }$ , which is a natural consequence of relaxing the assumption that $\mathbf{X}$ and $\mathbf{V}$ are of full (column) rank made by Krämer. Further results, dealing with the Euclidean distance between the best linear unbiased estimator (BLUE) and the ordinary least squares estimator (OLSE) of $\mathbf{X} \varvec{\beta }$ , as well as with an equality between BLUE and OLSE are also provided. The calculations are mostly based on a joint partitioned representation of a pair of orthogonal projectors.  相似文献   

15.
Estimation of a normal mean relative to balanced loss functions   总被引:3,自引:0,他引:3  
LetX 1,…,X nbe a random sample from a normal distribution with mean θ and variance σ2. The problem is to estimate θ with Zellner's (1994) balanced loss function, % MathType!End!2!1!, where 0<ω<1. It is shown that the sample mean % MathType!End!2!1!, is admissible. More generally, we investigate the admissibility of estimators of the form % MathType!End!2!1! under % MathType!End!2!1!. We also consider the weighted balanced loss function, % MathType!End!2!1!, whereq(θ) is any positive function of θ, and the class of admissible linear estimators is obtained under such loss withq(θ) =e θ .  相似文献   

16.
The mixture of Rayleigh random variables X 1and X 2 are identified in terms of relations between the conditional expectation of ( X2:22 -X1:22)r{\left( {X_{2:2}^2 -X_{1:2}^2}\right)^{r}} given X 1:2 (or X2:22k{X_{2:2}^{2k}} given X1:2,"kr){X_{1:2},\forall k\leq r)} and hazard rate function of the distribution, where X 1:2 and X 2:2 denote the corresponding order statistics, r is a positive integer. In addition, we also mention some related theorems to characterize the mixtures of Rayleigh distributions. Finally, we also give an application to Multi-Hit models of carcinogenesis (Parallel Systems) and a simulated example is used to illustrate our results.  相似文献   

17.
Given two independent non-degenerate positive random variables X and Y, Lukacs (Ann Math Stat 26:319–324, 1955) proved that X/(X + Y) and X + Y are independent if and only if X and Y are gamma distributed with the same scale parameter. In this work, under the assumption X/U and U are independent, and X/U has a ${{\mathcal Be}(p,\,q)}$ distribution, we characterize the distribution of (U, X) by the condition E(h(U ? X)|X) = b, where h is allowed to be a linear combination of exponential functions. Since the assumption for X and U above is equivalent to X|U being ${\mathcal{B}e(p,\,1)}$ scaled by U, hence our results can be viewed as identification of a power distribution mixture.  相似文献   

18.
Let \(X_1 ,X_2 ,\ldots ,X_n \) be a sequence of Markov Bernoulli trials (MBT) and \(\underline{X}_n =( {X_{n,k_1 } ,X_{n,k_2 } ,\ldots ,X_{n,k_r } })\) be a random vector where \(X_{n,k_i } \) represents the number of occurrences of success runs of length \(k_i \,( {i=1,2,\ldots ,r})\) . In this paper the joint distribution of \(\underline{X}_n \) in the sequence of \(n\) MBT is studied using method of conditional probability generating functions. Five different counting schemes of runs namely non-overlapping runs, runs of length at least \(k\) , overlapping runs, runs of exact length \(k\) and \(\ell \) -overlapping runs (i.e. \(\ell \) -overlapping counting scheme), \(0\le \ell are considered. The pgf of joint distribution of \(\underline{X}_n \) is obtained in terms of matrix polynomial and an algorithm is developed to get exact probability distribution. Numerical results are included to demonstrate the computational flexibility of the developed results. Various applications of the joint distribution of \(\underline{X}_n \) such as in evaluation of the reliability of \(( {n,f,k})\!\!:\!\!G\) and \(\!:\!\!G\) system, in evaluation of quantities related to start-up demonstration tests, acceptance sampling plans are also discussed.  相似文献   

19.
In this paper, we consider the problem of hypotheses testing about the drift parameter \(\theta \) in the process \(\text {d}Y^{\delta }_{t} = \theta \dot{f}(t)Y^{\delta }_{t}\text {d}t + b(t)\text {d}L^{\delta }_{t}\) driven by symmetric \(\delta \)-stable Lévy process \(L^{\delta }_{t}\) with \(\dot{f}(t)\) being the derivative of a known increasing function f(t) and b(t) being known as well. We consider the hypotheses testing \(H_{0}: \theta \le 0\) and \(K_{0}: \theta =0\) against the alternatives \(H_{1}: \theta >0\) and \(K_{1}: \theta \ne 0\), respectively. For these hypotheses, we propose inverse methods, which are motivated by sequential approach, based on the first hitting time of the observed process (or its absolute value) to a pre-specified boundary or two boundaries until some given time. The applicability of these methods is illustrated. For the case \(Y^{\delta }_{0}=0\), we are able to calculate the values of boundaries and finite observed times more directly. We are able to show the consistencies of proposed tests for \(Y^{\delta }_{0}\ge 0\) with \(\delta \in (1,2]\) and for \(Y^{\delta }_{0}=0\) with \(\delta \in (0,2]\) under quite mild conditions.  相似文献   

20.
Let \(\mathbf {X} = (X_1,\ldots ,X_p)\) be a stochastic vector having joint density function \(f_{\mathbf {X}}(\mathbf {x})\) with partitions \(\mathbf {X}_1 = (X_1,\ldots ,X_k)\) and \(\mathbf {X}_2 = (X_{k+1},\ldots ,X_p)\). A new method for estimating the conditional density function of \(\mathbf {X}_1\) given \(\mathbf {X}_2\) is presented. It is based on locally Gaussian approximations, but simplified in order to tackle the curse of dimensionality in multivariate applications, where both response and explanatory variables can be vectors. We compare our method to some available competitors, and the error of approximation is shown to be small in a series of examples using real and simulated data, and the estimator is shown to be particularly robust against noise caused by independent variables. We also present examples of practical applications of our conditional density estimator in the analysis of time series. Typical values for k in our examples are 1 and 2, and we include simulation experiments with values of p up to 6. Large sample theory is established under a strong mixing condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号