首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
A numerical specification of ‘size’ and ‘shape’ is of interest for making interpretations in morphometrics. Starting from a, possibly large, set m 1,…, mr of size measurements, e.g. m 1= height, m 2= sitting height, etc., a preliminary analysis provides the set x 1,…,xp of size measurements to be used, e.g. x 1= m 1? m 2= subischial leg length, x 2= m 2= sitting height, and x 3= head circumference. In general these xj are constructed as appropriately scaled linear combinations of the original measurements. A constant term should not be included because size measurements have to be 0 if all xj are 0. Our theory requires a (compromise) vector μof means and a matrix Σof (co)variances. Size being specified as an optimalsize characteristic of the form c x , the remaining morphological information is expressed by, at most, p? 1 components of shapeof the form d x. Relations with Darroch-Mosimann [9] Darroch, J. N. and Mosimann, J. E. 1985. Canonical and Principal Components of Shape. Biometrika, 72: 241252. [Crossref], [Web of Science ®] [Google Scholar]are indicated. An application to human growth is made and other applications are suggested.

Don't read my book, think for yourself.

C. R. Rao, personal communications, 1981  相似文献   

4.
5.
6.
7.
8.
Consider that we have a collection of k populations π1, π2…,πk. The quality of the ith population is characterized by a real parameter θi and the population is to be designated as superior or inferior depending on how much the θi differs from θmax = max{θ1, θ2,…,θk}. From the set {π1, π2,…,πk}, we wish to select the subset of superior populations. In this paper we devise rules of selection which have the property that their selected set excludes all the inferior populations with probability at least 1?α, where a is a specified number.  相似文献   

9.
In some statistical problems a degree of explicit, prior information is available about the value taken by the parameter of interest, θ say, although the information is much less than would be needed to place a prior density on the parameter's distribution. Often the prior information takes the form of a simple bound, ‘θ > θ1 ’ or ‘θ < θ1 ’, where θ1 is determined by physical considerations or mathematical theory, such as positivity of a variance. A conventional approach to accommodating the requirement that θ > θ1 is to replace an estimator, , of θ by the maximum of and θ1. However, this technique is generally inadequate. For one thing, it does not respect the strictness of the inequality θ > θ1 , which can be critical in interpreting results. For another, it produces an estimator that does not respond in a natural way to perturbations of the data. In this paper we suggest an alternative approach, in which bootstrap aggregation, or bagging, is used to overcome these difficulties. Bagging gives estimators that, when subjected to the constraint θ > θ1 , strictly exceed θ1 except in extreme settings in which the empirical evidence strongly contradicts the constraint. Bagging also reduces estimator variability in the important case for which is close to θ1, and more generally produces estimators that respect the constraint in a smooth, realistic fashion.  相似文献   

10.
Let X1,… Xm be a random sample of m failure times under normal conditions with the underlying distribution F(x) and Y1,…,Yn a random sample of n failure times under accelerated condititons with underlying distribution G(x);G(x)=1?[1?F(x)]θ with θ being the unknown parameter under study.Define:Uij=1 otherwise.The joint distribution of ijdoes not involve the distribution F and thus can be used to estimate the acceleration parameter θ.The second approach for estimating θ is to use the ranks of the Y-observations in the combined X- and Y-samples.In this paper we establish that the rank of the Y-observations in the pooled sample form a sufficient statistic for the information contained in the Uii 's about the parameter θ and that there does not exist an unbiassed estimator for the parameter θ.We also construct several estimators and confidence interavals for the parameter θ.  相似文献   

11.
Let (X1, X2, Y1, Y2) be a four dimensional random variable having the joint probability density function f(x1, x2, y1, y2). In this paper we consider the problem of estimating the regression function \({{E[(_{Y_2 }^{Y_1 } )} \mathord{\left/ {\vphantom {{E[(_{Y_2 }^{Y_1 } )} {_{X_2 = X_2 }^{X_1 = X_1 } }}} \right. \kern-0em} {_{X_2 = X_2 }^{X_1 = X_1 } }}]\) on the basis of a random sample of size n. We have proved that under certain regularity conditions the kernel estimate of this regression function is uniformly strongly consistent. We have also shown that under certain conditions the estimate is asymptotically normally distributed.  相似文献   

12.
The problem of estimating the effects in a balanced two-way classification with interaction \documentclass{article}\pagestyle{empty}\begin{document}$i = 1, \ldots ,I;j = 1, \ldots ,J;k = 1, \ldots ,K$\end{document} using a random effect model is considered from a Bayesian view point. Posterior distributions of ri, cj and tij are obtained under the assumptions that ri, cj, tij and eijk are all independently drawn from normal distributions with zero meansand variances \documentclass{article}\pagestyle{empty}\begin{document}$\sigma _r^2 ,\sigma _c^2 ,\sigma _t^2 ,\sigma _e^2$\end{document} respectively. A non informative reference prior is adopted for \documentclass{article}\pagestyle{empty}\begin{document}$\mu ,\sigma _r^2 ,\sigma _c^2 ,\sigma _t^2 ,\sigma _e^2$\end{document}. Various features of thisposterior distribution are obtained. The same features of the psoterior distribution for a fixed effect model are also obtained. A numerical example is given.  相似文献   

13.
We consider n pairs of random variables (X11,X21),(X12,X22),… (X1n,X2n) having a bivariate elliptically contoured density of the form where θ1 θ2 are location parameters and Δ = ((λik)) is a 2 × 2 symmetric positive definite matrix of scale parameters. The exact distribution of the Pearson product-moment correlation coefficient between X1 and X2 is obtained. The usual case when a sample of size n is drawn from a bivariate normal population is a special case of the abovementioned model.  相似文献   

14.
15.
16.
17.
18.
For X1, …, XN a random sample from a distribution F, let the process SδN(t) be defined as where K2N = σNi=1(ci ? c?)2 and R xi, + Δd, is the rank of Xi + Δdi, among X1 + Δd1, …, XN + ΔdN. The purpose of this note is to prove that, under certain regularity conditions on F and on the constants ci and di, SΔN (t) is asymptotically approximately a linear function of Δ, uniformly in t and in Δ, |Δ| ≤ C. The special case of two samples is considered.  相似文献   

19.
20.
The problem of simultaneously selecting two non-empty subsets, SLand SU, of k populations which contain the lower extreme population (LEP) and the upper extreme population (UEP), respectively, is considered. Unknown parameters θ1,…,θkcharacterize the populations π1,…,πkand the populations associated with θ[1]=min θi. and θ[k]= max θi. are called the LEP and the UEP, respectively. It is assumed that the underlying distributions possess the monotone likelihood ratio property and that the prior distribution of θ= (θ1,…,θk) is exchangeable. The Bayes rule with respect to a general loss function is obtained. Bayes rule with respect to a semi-additive and non-negative loss function is also determined and it is shown that it is minimax and admissible. When the selected subsets are required to be disjoint, it shown that the Bayes rule with respect to a specific loss function can be obtained by comparing certain computable integrals, Application to normal distributions with unknown means θ1,…,θkand a common known variance is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号