首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The circular arc coloring problem is to find a minimum coloring of a set of arcs of a circle so that no two overlapping arcs share a color. This NP-hard problem arises in a rich variety of applications and has been studied extensively. In this paper we present an O(n2 m) combinatorial algorithm for optimally coloring any set of arcs that corresponds to a perfect graph, and propose a new approach to the general circular arc coloring problem.Partially supported by Project 02139 of Education Ministry of China.Supported in part by the Research Grants Council of Hong Kong (Project No. HKU7054/03P) and a seed funding for basic research of HKU.  相似文献   

2.
This paper solves the problem of increasing the edge-connectivity of a bipartite digraph by adding the smallest number of new edges that preserve bipartiteness. A natural application arises when we wish to reinforce a 2-dimensional square grid framework with cables. We actually solve the more general problem of covering a crossing family of sets with the smallest number of directed edges, where each new edge must join the blocks of a given bipartition of the elements. The smallest number of new edges is given by a min-max formula that has six infinite families of exceptional cases. We discuss a problem on network flows whose solution has a similar formula with three infinite families of exceptional cases. We also discuss a problem on arborescences whose solution has five infinite families of exceptions. We give an algorithm that increases the edge-connectivity of a bipartite digraph in the same time as the best-known algorithm for the problem without the bipartite constraint: O(km log n) for unweighted digraphs and O(nm log (n 2/m)) for weighted digraphs, where n, m and k are the number of vertices and edges of the given graph and the target connectivity, respectively.  相似文献   

3.
4.
In this paper, we present a new model for RNA multiple sequence structural alignment based on the longest common subsequence. We consider both the off-line and on-line cases. For the off-line case, i.e., when the longest common subsequence is given as a linear graph with n vertices, we first present a polynomial O(n 2) time algorithm to compute its maximum nested loop. We then consider a slightly different problem—the Maximum Loop Chain problem and present an algorithm which runs in O(n 5) time. For the on-line case, i.e., given m RNA sequences of lengths n, compute the longest common subsequence of them such that this subsequence either induces a maximum nested loop or the maximum number of matches, we present efficient algorithms using dynamic programming when m is small. This research is partially supported by EPSCOR Visiting Scholar's Program and MSU Short-term Professional Development Program.  相似文献   

5.
In this paper, we studied the MINimum-d-Disjunct Submatrix (MIN-d-DS), which can be used to select the minimum number of non-unique probes for viruses identification. We prove that MIN-d-DS is NP-hard for any fixed d. Using d-disjunct matrix, we present an O(log k)-approximation algorithm where k is an upper bound on the maximum number of targets hybridized to a probe. We also present a (1+(d+1)log n)-approximation algorithm to identify at most d targets in the presence of experimental errors. Our approximation algorithms also yield a linear time complexity for the decoding algorithms. The research of T. Znati was supported in part by National Science Foundation under grant CCF-0548895.  相似文献   

6.
The problem Min-Power k-Connectivity seeks a power assignment to the nodes in a given wireless ad hoc network such that the produced network topology is k-connected and the total power is the lowest. In this paper, we present several approximation algorithms for this problem. Specifically, we propose a 3k-approximation algorithm for any k, a (k + 12H (k)) -approximation algorithm for k(2k–1) n where n is the network size, a (k+2(k + 1)/2) -approximation algorithm for 2 k7, a 6-approximation algorithm for k = 3, and a 9-approximation algorithm for k = 4.This work is supported in part by Hong Kong Research Grant Council under grant No. CityU 1149/04E.This work is partially supported by NSF CCR-0311174.  相似文献   

7.
Minimum m-connected k-dominating set problem is as follows: Given a graph G=(V,E) and two natural numbers m and k, find a subset SV of minimal size such that every vertex in VS is adjacent to at least k vertices in S and the induced graph of S is m-connected. In this paper we study this problem with unit disc graphs and small m, which is motivated by the design of fault-tolerant virtual backbone for wireless sensor networks. We propose two approximation algorithms with constant performance ratios for m≤2. We also discuss how to design approximation algorithms for the problem with arbitrarily large m. This work was supported in part by the Research Grants Council of Hong Kong under Grant No. CityU 1165/04E, the National Natural Science Foundation of China under Grant No. 70221001, 10531070 and 10771209.  相似文献   

8.
Efficient algorithms for finding a longest common increasing subsequence   总被引:1,自引:1,他引:0  
We study the problem of finding a longest common increasing subsequence (LCIS) of multiple sequences of numbers. The LCIS problem is a fundamental issue in various application areas, including the whole genome alignment. In this paper we give an efficient algorithm to find the LCIS of two sequences in time where n is the length of each sequence andr is the number of ordered pairs of positions at which the two sequences match, ℓ is the length of the LCIS, and Sort(n) is the time to sort n numbers. For m sequences wherem ≥ 3, we find the LCIS in Sort(n)) time where r is the total number of m-tuples of positions at which the m sequences match. The previous results find the LCIS of two sequences in O(n 2) and Sort(n)) time. Our algorithm is faster when r is relatively small, e.g., for .  相似文献   

9.
For an edge weighted undirected graph G and an integer k > 2, a k-way cut is a set of edges whose removal leaves G with at least k components. We propose a simple approximation algorithm to the minimum k-way cut problem. It computes a nearly optimal k-way cut by using a set of minimum 3-way cuts. We show that the performance ratio of our algorithm is 2 – 3/k for an odd k and 2 – (3k – 4)/(k 2k) for an even k. The running time is O(kmn 3 log(n 2/m)) where n and m are the numbers of vertices and edges respectively.  相似文献   

10.
Online scheduling on parallel machines with two GoS levels   总被引:2,自引:0,他引:2  
This paper investigates the online scheduling problem on parallel and identical machines with a new feature that service requests from various customers are entitled to many different grade of service (GoS) levels. Hence each job and machine are labeled with the GoS levels, and each job can be processed by a particular machine only when the GoS level of the job is not less than that of the machine. The goal is to minimize the makespan. In this paper, we consider the problem with two GoS levels. It assumes that the GoS levels of the first k machines and the last mk machines are 1 and 2, respectively. And every job has a GoS level of 1 alternatively or 2. We first prove the lower bound of the problem under consideration is at least 2. Then we discuss the performance of algorithm AW presented in Azar et al. (J. Algorithms 18:221–237, 1995) for the problem and show it has a tight bound of 4−1/m. Finally, we present an approximation algorithm with competitive ratio . Research supported by Natural Science Foundation of Zhejiang Province (Y605316) and its preliminary version appeared in Proceedings of AAIM2006, LNCS, 4041, 11-21.  相似文献   

11.
In a recent article by Rosenthal, Zydiak, and Chaudhry (1995), a mixed integer linear programming model was introduced to solve the vendor selection problem for the case in which the vendor can sell items individually or as part of a bundle. Each vendor offered only one type of bundle, and the buyer could purchase at most one bundle per vendor. The model employed n(m+ 1) binary variables, where n is the number of vendors and m is the number of products they sell. The existing model can lead to a purchasing paradox: it may force the buyer to pay more to receive less. We suggest a reformulation of the same problem that (i) eliminates this paradox and reveals a more cost-effective purchasing strategy; (ii) uses only n integer variables and significantly reduces the computational workload; and (iii) permits the buyer to purchase more than one bundle per vendor.  相似文献   

12.
Almost optimal solutions for bin coloring problems   总被引:1,自引:1,他引:0  
In this paper we study two interesting bin coloring problems: Minimum Bin Coloring Problem (MinBC) and Online Maximum Bin Coloring Problem (OMaxBC), motivated from several applications in networking. For the MinBC problem, we present two near linear time approximation algorithms to achieve almost optimal solutions, i.e., no more than OPT+2 and OPT+1 respectively, where OPT is the optimal solution. For the OMaxBC problem, we first introduce a deterministic 2-competitive greedy algorithm, and then give lower bounds for any deterministic and randomized (against adaptive offline adversary) online algorithms. The lower bounds show that our deterministic algorithm achieves the best possible competitive ratio. The research of this paper was partially supported by an NSF CAREER award CCF-0546509.  相似文献   

13.
Given a set S of starting vertices and a set T of terminating vertices in a graph G = (V,E) with non-negative weights on edges, the minimum Steiner network problem is to find a subgraph of G with the minimum total edge weight. In such a subgraph, we require that for each vertex s S and t T, there is a path from s to a terminating vertex as well as a path from a starting vertex to t. This problem can easily be proven NP-hard. For solving the minimum Steiner network problem, we first present an algorithm that runs in time and space that both are polynomial in n with constant degrees, but exponential in |S|+|T|, where n is the number of vertices in G. Then we present an algorithm that uses space that is quadratic in n and runs in time that is polynomial in n with a degree O(max {max {|S|,|T|}–2,min {|S|,|T|}–1}). In spite of this degree, we prove that the number of Steiner vertices in our solution can be as large as |S|+|T|–2. Our algorithm can enumerate all possible optimal solutions. The input graph G can either be undirected or directed acyclic. We also give a linear time algorithm for the special case when min {|S|,|T|} = 1 and max {|S|,|T|} = 2.The minimum union paths problem is similar to the minimum Steiner network problem except that we are given a set H of hitting vertices in G in addition to the sets of starting and terminating vertices. We want to find a subgraph of G with the minimum total edge weight such that the conditions required by the minimum Steiner network problem are satisfied as well as the condition that every hitting vertex is on a path from a starting vertex to a terminating vertex. Furthermore, G must be directed acyclic. For solving the minimum union paths problem, we also present algorithms that have a time and space tradeoff similar to algorithms for the minimum Steiner network problem. We also give a linear time algorithm for the special case when |S| = 1, |T| = 1 and |H| = 2.An extended abstract of part of this paper appears in Hsu et al. (1996).Supported in part by the National Science Foundation under Grants CCR-9309743 and INT-9207212, and by the Office of Naval Research under Grant No. N00014-93-1-0272.Supported in part by the National Science Council, Taiwan, ROC, under Grant No. NSC-83-0408-E-001-021.  相似文献   

14.
Nowadays, it is popular that the dealer makes profits by selling a kind of discount coupons, which can be used as money to purchase commodities with total cost less than or equal to the face value of the coupon. We can purchase a coupon at a price of 0<s≤1 times its face value and the number of potential purchasable coupons is a given integer l. The customer has the option to buy the goods by cash completely or by a discount coupon. However, each piece of goods can only use one coupon and the coupon used must have enough balance for the goods. The objective is to minimize the total cost for purchasing all the goods. In this paper, we reduce the problem to a special bin packing model. We consider the online problems for all 0<s≤1 and 1≤l≤∞. We present optimal online algorithms for all 0<s≤1 when l=∞ and l=1. For 2≤l<∞, we give both a lower bound and an algorithm, and show the algorithm is optimal for l=2. A preliminary version of this paper appeared in the proceedings of the 1st International Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, Lecture Notes in Computer Science. Y. Jiang supported by Natural Science Foundation of Zhejiang Province (Y605316). Z. Tan supported by Natural Science Foundation of China (10671177, 60021201).  相似文献   

15.
This paper considers tests for structural instability of short duration, such as at the end of the sample. The key feature of the testing problem is that the number, m, of observations in the period of potential change is relatively small—possibly as small as one. The well‐known F test of Chow (1960) for this problem only applies in a linear regression model with normally distributed iid errors and strictly exogenous regressors, even when the total number of observations, n+m, is large. We generalize the F test to cover regression models with much more general error processes, regressors that are not strictly exogenous, and estimation by instrumental variables as well as least squares. In addition, we extend the F test to nonlinear models estimated by generalized method of moments and maximum likelihood. Asymptotic critical values that are valid as n→∞ with m fixed are provided using a subsampling‐like method. The results apply quite generally to processes that are strictly stationary and ergodic under the null hypothesis of no structural instability.  相似文献   

16.
Lot streaming is the process of splitting a job or lot into sublots to reduce its makespan on a sequence of machines. The goal in the lot streaming problem is to find the optimal size of each sublot that will minimize the makespan. The makespan is defined as the time the last sublot completes its processing on the last machine. If the sizes of these sublots are restricted to remain the same on all machines, the solution is called a consistent sublot solution. However, if the sizes of the sublots are allowed to vary, the solution is referred to as a nonconsistent or variable sublot solution. Also, if the machines must be in operation continuously from the first to the last sublot, the solution is a no idling solution. When setups are explicitly considered in the problem, there will be two cases. If setups on each machine require some portion of the first sublot be present by the machine, the problem is referred to as the attached setup time problem. If setups can be performed ahead of time before the first sublot reaches the particular machine, the corresponding problem is referred to as the detached setup problem. Finally, if the machines are allowed to be idle between the processing of sublots, the resultant solution is an intermittent idling solution. In this paper, the consistent sublot lot streaming problem with intermittent idling and no setups is discussed. The models developed also assume that the number of sublots are fixed and known. The m machine two sublot lot streaming problem is reviewed. An algorithm for the three sublot, m machine problem is derived using a network representation of the problem. The complexity of the algorithm is O (m2). Finally, using the insights from three sublot problem, a heuristic algorithm is provided for the m machine, n sublot problems. The results on the proposed heuristic are very encouraging; average percent deviation from optimal makespan is approximately at 0.76% on 155 randomly generated problems with different m and n values.  相似文献   

17.
In a graph G, a vertex dominates itself and its neighbors. A subset SeqV(G) is an m-tuple dominating set if S dominates every vertex of G at least m times, and an m-dominating set if S dominates every vertex of GS at least m times. The minimum cardinality of a dominating set is γ, of an m-dominating set is γ m , and of an m-tuple dominating set is mtupledom. For a property π of subsets of V(G), with associated parameter f_π, the k-restricted π-number r k (G,f_π) is the smallest integer r such that given any subset K of (at most) k vertices of G, there exists a π set containing K of (at most) cardinality r. We show that for 1< k < n where n is the order of G: (a) if G has minimum degree m, then r k (G m ) < (mn+k)/(m+1); (b) if G has minimum degree 3, then r k (G,γ) < (3n+5k)/8; and (c) if G is connected with minimum degree at least 2, then r k (G,ddom) < 3n/4 + 2k/7. These bounds are sharp. Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.  相似文献   

18.
Rocchio’s similarity-based relevance feedback algorithm, one of the most important query reformation methods in information retrieval, is essentially an adaptive supervised learning algorithm from examples. In practice, Rocchio’s algorithm often uses a fixed query updating factor. When this is the case, we strengthen the linear Ω(n) lower bound obtained by Chen and Zhu (Inf. Retr. 5:61–86, 2002) and prove that Rocchio’s algorithm makes Ω(k(nk)) mistakes in searching for a collection of documents represented by a monotone disjunction of k relevant features over the n-dimensional binary vector space {0,1} n , when the inner product similarity measure is used. A quadratic lower bound is obtained when k is linearly proportional to n. We also prove an O(k(nk)3) upper bound for Rocchio’s algorithm with the inner product similarity measure in searching for such a collection of documents with a constant query updating factor and a zero classification threshold.  相似文献   

19.
The problem of optimal surface flattening in 3-D finds many applications in engineering and manufacturing. However, previous algorithms for this problem are all heuristics without any quality guarantee and the computational complexity of the problem was not well understood. In this paper, we prove that the optimal surface flattening problem is NP-hard. Further, we show that the problem of flattening a topologically spherical surface admits a PTAS and can be solved by a (1+ε)-approximation algorithm in O(nlog n) time for any constant ε>0, where n is the input size of the problem.  相似文献   

20.
We study the problem of (off-line) broadcast scheduling in minimizing total flow time and propose a dynamic programming approach to compute an optimal broadcast schedule. Suppose the broadcast server has k pages and the last page request arrives at time n. The optimal schedule can be computed in O(k3(n+k)k−1) time for the case that the server has a single broadcast channel. For m channels case, i.e., the server can broadcast m different pages at a time where m < k, the optimal schedule can be computed in O(nkm) time when k and m are constants. Note that this broadcast scheduling problem is NP-hard when k is a variable and will take O(nkm+1) time when k is fixed and m ≥ 1 with the straightforward implementation of the dynamic programming approach. The preliminary version of this paper appeared in Proceedings of the 11th Annual International Computing and Combinatorics Conference as “Off-line Algorithms for Minimizing the Total Flow Time in Broadcast Scheduling”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号