首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
Abstract. General autoregressive moving average (ARMA) models extend the traditional ARMA models by removing the assumptions of causality and invertibility. The assumptions are not required under a non‐Gaussian setting for the identifiability of the model parameters in contrast to the Gaussian setting. We study M‐estimation for general ARMA processes with infinite variance, where the distribution of innovations is in the domain of attraction of a non‐Gaussian stable law. Following the approach taken by Davis et al. (1992) and Davis (1996) , we derive a functional limit theorem for random processes based on the objective function, and establish asymptotic properties of the M‐estimator. We also consider bootstrapping the M‐estimator and extend the results of Davis & Wu (1997) to the present setting so that statistical inferences are readily implemented. Simulation studies are conducted to evaluate the finite sample performance of the M‐estimation and bootstrap procedures. An empirical example of financial time series is also provided.  相似文献   

2.
In recent years, modelling count data has become one of the most important and popular topics in time‐series analysis. At the same time, variable selection methods have become widely used in many fields as an effective statistical modelling tool. In this paper, we consider using a variable selection method to solve a modelling problem regarding the first‐order Poisson integer‐valued autoregressive (PINAR(1)) model with covariables. The PINAR(1) model with covariables is widely used in many areas because of its practicality. When using this model to deal with practical problems, multiple covariables are added to the model because it is impossible to know in advance which covariables will affect the results. But the inclusion of some insignificant covariables is almost impossible to avoid. Unfortunately, the usual estimation method is not adequate for the task of deleting the insignificant covariables that cause statistical inferences to become biased. To overcome this defect, we propose a penalised conditional least squares (PCLS) method, which can consistently select the true model. The PCLS estimator is also provided and its asymptotic properties are established. Simulation studies demonstrate that the PCLS method is effective for estimation and variable selection. One practical example is also presented to illustrate the practicability of the PCLS method.  相似文献   

3.
This paper is about vector autoregressive‐moving average models with time‐dependent coefficients to represent non‐stationary time series. Contrary to other papers in the univariate case, the coefficients depend on time but not on the series' length n. Under appropriate assumptions, it is shown that a Gaussian quasi‐maximum likelihood estimator is almost surely consistent and asymptotically normal. The theoretical results are illustrated by means of two examples of bivariate processes. It is shown that the assumptions underlying the theoretical results apply. In the second example, the innovations are marginally heteroscedastic with a correlation ranging from ?0.8 to 0.8. In the two examples, the asymptotic information matrix is obtained in the Gaussian case. Finally, the finite‐sample behaviour is checked via a Monte Carlo simulation study for n from 25 to 400. The results confirm the validity of the asymptotic properties even for short series and the asymptotic information matrix deduced from the theory.  相似文献   

4.
This paper deals with a bias correction of Akaike's information criterion (AIC) for selecting variables in multivariate normal linear regression models when the true distribution of observation is an unknown non‐normal distribution. It is well known that the bias of AIC is $O(1)$ , and there are a number of the first‐order bias‐corrected AICs which improve the bias to $O(n^{-1})$ , where $n$ is the sample size. A new information criterion is proposed by slightly adjusting the first‐order bias‐corrected AIC. Although the adjustment is achieved by merely using constant coefficients, the bias of the new criterion is reduced to $O(n^{-2})$ . Then, a variance of the new criterion is also improved. Through numerical experiments, we verify that our criterion is superior to others. The Canadian Journal of Statistics 39: 126–146; 2011 © 2011 Statistical Society of Canada  相似文献   

5.
The timing of a time‐dependent treatment—for example, when to perform a kidney transplantation—is an important factor for evaluating treatment efficacy. A naïve comparison between the treated and untreated groups, while ignoring the timing of treatment, typically yields biased results that might favour the treated group because only patients who survive long enough will get treated. On the other hand, studying the effect of a time‐dependent treatment is often complex, as it involves modelling treatment history and accounting for the possible time‐varying nature of the treatment effect. We propose a varying‐coefficient Cox model that investigates the efficacy of a time‐dependent treatment by utilizing a global partial likelihood, which renders appealing statistical properties, including consistency, asymptotic normality and semiparametric efficiency. Extensive simulations verify the finite sample performance, and we apply the proposed method to study the efficacy of kidney transplantation for end‐stage renal disease patients in the US Scientific Registry of Transplant Recipients.  相似文献   

6.
Abstract. The cross‐validation (CV) criterion is known to be asecond‐order unbiased estimator of the risk function measuring the discrepancy between the candidate model and the true model, as well as the generalized information criterion (GIC) and the extended information criterion (EIC). In the present article, we show that the 2kth‐order unbiased estimator can be obtained using a linear combination from the leave‐one‐out CV criterion to the leave‐k‐out CV criterion. The proposed scheme is unique in that a bias smaller than that of a jackknife method can be obtained without any analytic calculation, that is, it is not necessary to obtain the explicit form of several terms in an asymptotic expansion of the bias. Furthermore, the proposed criterion can be regarded as a finite correction of a bias‐corrected CV criterion by using scalar coefficients in a bias‐corrected EIC obtained by the bootstrap iteration.  相似文献   

7.
In the traditional study design of a single‐arm phase II cancer clinical trial, the one‐sample log‐rank test has been frequently used. A common practice in sample size calculation is to assume that the event time in the new treatment follows exponential distribution. Such a study design may not be suitable for immunotherapy cancer trials, when both long‐term survivors (or even cured patients from the disease) and delayed treatment effect are present, because exponential distribution is not appropriate to describe such data and consequently could lead to severely underpowered trial. In this research, we proposed a piecewise proportional hazards cure rate model with random delayed treatment effect to design single‐arm phase II immunotherapy cancer trials. To improve test power, we proposed a new weighted one‐sample log‐rank test and provided a sample size calculation formula for designing trials. Our simulation study showed that the proposed log‐rank test performs well and is robust of misspecified weight and the sample size calculation formula also performs well.  相似文献   

8.
Abstract. To increase the predictive abilities of several plasma biomarkers on the coronary artery disease (CAD)‐related vital statuses over time, our research interest mainly focuses on seeking combinations of these biomarkers with the highest time‐dependent receiver operating characteristic curves. An extended generalized linear model (EGLM) with time‐varying coefficients and an unknown bivariate link function is used to characterize the conditional distribution of time to CAD‐related death. Based on censored survival data, two non‐parametric procedures are proposed to estimate the optimal composite markers, linear predictors in the EGLM model. Estimation methods for the classification accuracies of the optimal composite markers are also proposed. In the article we establish theoretical results of the estimators and examine the corresponding finite‐sample properties through a series of simulations with different sample sizes, censoring rates and censoring mechanisms. Our optimization procedures and estimators are further shown to be useful through an application to a prospective cohort study of patients undergoing angiography.  相似文献   

9.
A 3‐arm trial design that includes an experimental treatment, an active reference treatment, and a placebo is useful for assessing the noninferiority of an experimental treatment. The inclusion of a placebo arm enables the assessment of assay sensitivity and internal validation, in addition to the testing of the noninferiority of the experimental treatment compared with the reference treatment. In 3‐arm noninferiority trials, various statistical test procedures have been considered to evaluate the following 3 hypotheses: (i) superiority of the experimental treatment over the placebo, (ii) superiority of the reference treatment over the placebo, and (iii) noninferiority of the experimental treatment compared with the reference treatment. However, hypothesis (ii) can be insufficient and may not accurately assess the assay sensitivity for the noninferiority of the experimental treatment compared with the reference treatment. Thus, demonstrating that the superiority of the reference treatment over the placebo is greater than the noninferiority margin (the nonsuperiority of the reference treatment compared with the placebo) can be necessary. Here, we propose log‐rank statistical procedures for evaluating data obtained from 3‐arm noninferiority trials to assess assay sensitivity with a prespecified margin Δ. In addition, we derive the approximate sample size and optimal allocation required to minimize the total sample size and that of the placebo treatment sample size, hierarchically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号