共查询到20条相似文献,搜索用时 15 毫秒
1.
A Semiparametrically Efficient Estimator of the Time‐Varying Effects for Survival Data with Time‐Dependent Treatment 下载免费PDF全文
The timing of a time‐dependent treatment—for example, when to perform a kidney transplantation—is an important factor for evaluating treatment efficacy. A naïve comparison between the treated and untreated groups, while ignoring the timing of treatment, typically yields biased results that might favour the treated group because only patients who survive long enough will get treated. On the other hand, studying the effect of a time‐dependent treatment is often complex, as it involves modelling treatment history and accounting for the possible time‐varying nature of the treatment effect. We propose a varying‐coefficient Cox model that investigates the efficacy of a time‐dependent treatment by utilizing a global partial likelihood, which renders appealing statistical properties, including consistency, asymptotic normality and semiparametric efficiency. Extensive simulations verify the finite sample performance, and we apply the proposed method to study the efficacy of kidney transplantation for end‐stage renal disease patients in the US Scientific Registry of Transplant Recipients. 相似文献
2.
Abdelkamel Alj Rajae Azrak Christophe Ley Guy Mélard 《Scandinavian Journal of Statistics》2017,44(3):617-635
This paper is about vector autoregressive‐moving average models with time‐dependent coefficients to represent non‐stationary time series. Contrary to other papers in the univariate case, the coefficients depend on time but not on the series' length n. Under appropriate assumptions, it is shown that a Gaussian quasi‐maximum likelihood estimator is almost surely consistent and asymptotically normal. The theoretical results are illustrated by means of two examples of bivariate processes. It is shown that the assumptions underlying the theoretical results apply. In the second example, the innovations are marginally heteroscedastic with a correlation ranging from ?0.8 to 0.8. In the two examples, the asymptotic information matrix is obtained in the Gaussian case. Finally, the finite‐sample behaviour is checked via a Monte Carlo simulation study for n from 25 to 400. The results confirm the validity of the asymptotic properties even for short series and the asymptotic information matrix deduced from the theory. 相似文献
3.
In this paper, we consider improved estimating equations for semiparametric partial linear models (PLM) for longitudinal data, or clustered data in general. We approximate the non‐parametric function in the PLM by a regression spline, and utilize quadratic inference functions (QIF) in the estimating equations to achieve a more efficient estimation of the parametric part in the model, even when the correlation structure is misspecified. Moreover, we construct a test which is an analogue to the likelihood ratio inference function for inferring the parametric component in the model. The proposed methods perform well in simulation studies and real data analysis conducted in this paper. 相似文献
4.
Megu Ohtaki 《Australian & New Zealand Journal of Statistics》2011,53(2):247-256
There are several ways to handle within‐subject correlations with a longitudinal discrete outcome, such as mortality. The most frequently used models are either marginal or random‐effects types. This paper deals with a random‐effects‐based approach. We propose a nonparametric regression model having time‐varying mixed effects for longitudinal cancer mortality data. The time‐varying mixed effects in the proposed model are estimated by combining kernel‐smoothing techniques and a growth‐curve model. As an illustration based on real data, we apply the proposed method to a set of prefecture‐specific data on mortality from large‐bowel cancer in Japan. 相似文献
5.
Abstract. First, to test the existence of random effects in semiparametric mixed models (SMMs) under only moment conditions on random effects and errors, we propose a very simple and easily implemented non‐parametric test based on a difference between two estimators of the error variance. One test is consistent only under the null and the other can be so under both the null and alternatives. Instead of erroneously solving the non‐standard two‐sided testing problem, as in most papers in the literature, we solve it correctly and prove that the asymptotic distribution of our test statistic is standard normal. This avoids Monte Carlo approximations to obtain p ‐values, as is needed for many existing methods, and the test can detect local alternatives approaching the null at rates up to root n. Second, as the higher moments of the error are necessarily estimated because the standardizing constant involves these quantities, we propose a general method to conveniently estimate any moments of the error. Finally, a simulation study and a real data analysis are conducted to investigate the properties of our procedures. 相似文献
6.
Informative identification of the within‐subject correlation is essential in longitudinal studies in order to forecast the trajectory of each subject and improve the validity of inferences. In this paper, we fit this correlation structure by employing a time adaptive autoregressive error process. Such a process can automatically accommodate irregular and possibly subject‐specific observations. Based on the fitted correlation structure, we propose an efficient two‐stage estimator of the unknown coefficient functions by using a local polynomial approximation. This procedure does not involve within‐subject covariance matrices and hence circumvents the instability of calculating their inverses. The asymptotic normality of resulting estimators is established. Numerical experiments were conducted to check the finite sample performance of our method and an example of an application involving a set of medical data is also illustrated. 相似文献
7.
半参数纵向模型的惩罚二次推断函数估计 总被引:1,自引:3,他引:1
针对纵向数据半参数模型E(y|x,t)=XTβ+f(t),采用惩罚二次推断函数方法同时估计模型中的回归参数β和未知光滑函数f(t)。首先利用截断幂函数基对未知光滑函数进行基函数展开近似,然后利用惩罚样条的思想构造关于回归参数和基函数系数的惩罚二次推断函数,最小化惩罚二次推断函数便可得到回归参数和基函数系数的惩罚二次推断函数估计。理论结果显示,估计结果具有相合性和渐近正态性,通过数值方法也得到了较好的模拟结果。 相似文献
8.
In longitudinal studies, observation times are often irregular and subject‐specific. Frequently they are related to the outcome measure or other variables that are associated with the outcome measure but undesirable to condition upon in the model for outcome. Regression analyses that are unadjusted for outcome‐dependent follow‐up then yield biased estimates. The authors propose a class of inverse‐intensity rate‐ratio weighted estimators in generalized linear models that adjust for outcome‐dependent follow‐up. The estimators, based on estimating equations, are very simple and easily computed; they can be used under mixtures of continuous and discrete observation times. The predictors of observation times can be past observed outcomes, cumulative values of outcome‐model covariates and other factors associated with the outcome. The authors validate their approach through simulations and they illustrate it using data from a supported housing program from the US federal government. 相似文献
9.
Abstract. Although generalized cross‐validation (GCV) has been frequently applied to select bandwidth when kernel methods are used to estimate non‐parametric mixed‐effect models in which non‐parametric mean functions are used to model covariate effects, and additive random effects are applied to account for overdispersion and correlation, the optimality of the GCV has not yet been explored. In this article, we construct a kernel estimator of the non‐parametric mean function. An equivalence between the kernel estimator and a weighted least square type estimator is provided, and the optimality of the GCV‐based bandwidth is investigated. The theoretical derivations also show that kernel‐based and spline‐based GCV give very similar asymptotic results. This provides us with a solid base to use kernel estimation for mixed‐effect models. Simulation studies are undertaken to investigate the empirical performance of the GCV. A real data example is analysed for illustration. 相似文献
10.
We study estimation and hypothesis testing in single‐index panel data models with individual effects. Through regressing the individual effects on the covariates linearly, we convert the estimation problem in single‐index panel data models to that in partially linear single‐index models. The conversion is valid regardless of the individual effects being random or fixed. We propose an estimating equation approach, which has a desirable double robustness property. We show that our method is applicable in single‐index panel data models with heterogeneous link functions. We further design a chi‐squared test to evaluate whether the individual effects are random or fixed. We conduct simulations to demonstrate the finite sample performance of the method and conduct a data analysis to illustrate its usefulness. 相似文献
11.
This article considers a nonparametric varying coefficient regression model with longitudinal observations. The relationship between the dependent variable and the covariates is assumed to be linear at a specific time point, but the coefficients are allowed to change over time. A general formulation is used to treat mean regression, median regression, quantile regression, and robust mean regression in one setting. The local M-estimators of the unknown coefficient functions are obtained by local linear method. The asymptotic distributions of M-estimators of unknown coefficient functions at both interior and boundary points are established. Various applications of the main results, including estimating conditional quantile coefficient functions and robustifying the mean regression coefficient functions are derived. Finite sample properties of our procedures are studied through Monte Carlo simulations. 相似文献
12.
Abstract. Longitudinal data frequently occur in many studies, and longitudinal responses may be correlated with observation times. In this paper, we propose a new joint modelling for the analysis of longitudinal data with time‐dependent covariates and possibly informative observation times via two latent variables. For inference about regression parameters, estimating equation approaches are developed and asymptotic properties of the proposed estimators are established. In addition, a lack‐of‐fit test is presented for assessing the adequacy of the model. The proposed method performs well in finite‐sample simulation studies, and an application to a bladder tumour study is provided. 相似文献
13.
XIAOFENG SHAO 《Scandinavian Journal of Statistics》2012,39(4):772-783
This article is concerned with inference for the parameter vector in stationary time series models based on the frequency domain maximum likelihood estimator. The traditional method consistently estimates the asymptotic covariance matrix of the parameter estimator and usually assumes the independence of the innovation process. For dependent innovations, the asymptotic covariance matrix of the estimator depends on the fourth‐order cumulants of the unobserved innovation process, a consistent estimation of which is a difficult task. In this article, we propose a novel self‐normalization‐based approach to constructing a confidence region for the parameter vector in such models. The proposed procedure involves no smoothing parameter, and is widely applicable to a large class of long/short memory time series models with weakly dependent innovations. In simulation studies, we demonstrate favourable finite sample performance of our method in comparison with the traditional method and a residual block bootstrap approach. 相似文献
14.
《商业与经济统计学杂志》2012,30(1):1-18
AbstractWe propose a simple procedure based on an existing “debiased” l1-regularized method for inference of the average partial effects (APEs) in approximately sparse probit and fractional probit models with panel data, where the number of time periods is fixed and small relative to the number of cross-sectional observations. Our method is computationally simple and does not suffer from the incidental parameters problems that come from attempting to estimate as a parameter the unobserved heterogeneity for each cross-sectional unit. Furthermore, it is robust to arbitrary serial dependence in underlying idiosyncratic errors. Our theoretical results illustrate that inference concerning APEs is more challenging than inference about fixed and low-dimensional parameters, as the former concerns deriving the asymptotic normality for sample averages of linear functions of a potentially large set of components in our estimator when a series approximation for the conditional mean of the unobserved heterogeneity is considered. Insights on the applicability and implications of other existing Lasso-based inference procedures for our problem are provided. We apply the debiasing method to estimate the effects of spending on test pass rates. Our results show that spending has a positive and statistically significant average partial effect; moreover, the effect is comparable to found using standard parametric methods. 相似文献
15.
Estimation and Inference Procedures for Semiparametric Distribution Models with Varying Linear‐Index 下载免费PDF全文
More flexible semiparametric linear‐index regression models are proposed to describe the conditional distribution. Such a model formulation captures varying effects of covariates over the support of a response variable in distribution, offers an alternative perspective on dimension reduction and covers a lot of widely used parametric and semiparameteric regression models. A feasible pseudo likelihood approach, accompanied with a simple and easily implemented algorithm, is further developed for the mixed case with both varying and invariant coefficients. By justifying some theoretical properties on Banach spaces, the uniform consistency and asymptotic Gaussian process of the proposed estimator are also established in this article. In addition, under the monotonicity of distribution in linear‐index, we develop an alternative approach based on maximizing a varying accuracy measure. By virtue of the asymptotic recursion relation for the estimators, some of the achievements in this direction include showing the convergence of the iterative computation procedure and establishing the large sample properties of the resulting estimator. It is noticeable that our theoretical framework is very helpful in constructing confidence bands for the parameters of interest and tests for the hypotheses of various qualitative structures in distribution. Generally, the developed estimation and inference procedures perform quite satisfactorily in the conducted simulations and are demonstrated to be useful in reanalysing data from the Boston house price study and the World Values Survey. 相似文献
16.
Kangning Wang 《Journal of Statistical Computation and Simulation》2015,85(7):1459-1473
Partial linear varying coefficient models (PLVCM) are often considered for analysing longitudinal data for a good balance between flexibility and parsimony. The existing estimation and variable selection methods for this model are mainly built upon which subset of variables have linear or varying effect on the response is known in advance, or say, model structure is determined. However, in application, this is unreasonable. In this work, we propose a simultaneous structure estimation and variable selection method, which can do simultaneous coefficient estimation and three types of selections: varying and constant effects selection, relevant variable selection. It can be easily implemented in one step by employing a penalized M-type regression, which uses a general loss function to treat mean, median, quantile and robust mean regressions in a unified framework. Consistency in the three types of selections and oracle property in estimation are established as well. Simulation studies and real data analysis also confirm our method. 相似文献
17.
In this article, the generalized linear model for longitudinal data is studied. A generalized empirical likelihood method is proposed by combining generalized estimating equations and quadratic inference functions based on the working correlation matrix. It is proved that the proposed generalized empirical likelihood ratios are asymptotically chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. In addition, the maximum empirical likelihood estimates of parameters are obtained, and their asymptotic normalities are proved. Some simulations are undertaken to compare the generalized empirical likelihood and normal approximation-based method in terms of coverage accuracies and average areas/lengths of confidence regions/intervals. An example of a real data is used for illustrating our methods. 相似文献
18.
Huazhen Lin Baoying Yang Ling Zhou Paul S. F. Yip Ying‐Yeh Chen Hua Liang 《Revue canadienne de statistique》2019,47(3):487-519
We propose a varying‐coefficient autoregressive model that contains additive models, varying‐ coefficient models, partially linear models and low‐dimensional interaction models as special cases. A global kernel backfitting method is proposed for the estimation and inference of parameters and unknown functions in this model. Key large‐sample results are established, including estimation consistency, asymptotic normality and the generalized likelihood ratio test for parameters and non‐parametric functions. The proposed methodology is examined by simulation studies and applied to examine the relationship between suicide news reports in the three leading newspapers and the daily number of suicides in Taiwan. The relationship between the media reporting and suicide incidence has been established and explored. The Canadian Journal of Statistics 47: 487–519; 2019 © 2019 Statistical Society of Canada 相似文献
19.
Composite Estimating Equation Method for the Accelerated Failure Time Model with Length‐biased Sampling Data 下载免费PDF全文
Length‐biased sampling data are often encountered in the studies of economics, industrial reliability, epidemiology, genetics and cancer screening. The complication of this type of data is due to the fact that the observed lifetimes suffer from left truncation and right censoring, where the left truncation variable has a uniform distribution. In the Cox proportional hazards model, Huang & Qin (Journal of the American Statistical Association, 107, 2012, p. 107) proposed a composite partial likelihood method which not only has the simplicity of the popular partial likelihood estimator, but also can be easily performed by the standard statistical software. The accelerated failure time model has become a useful alternative to the Cox proportional hazards model. In this paper, by using the composite partial likelihood technique, we study this model with length‐biased sampling data. The proposed method has a very simple form and is robust when the assumption that the censoring time is independent of the covariate is violated. To ease the difficulty of calculations when solving the non‐smooth estimating equation, we use a kernel smoothed estimation method (Heller; Journal of the American Statistical Association, 102, 2007, p. 552). Large sample results and a re‐sampling method for the variance estimation are discussed. Some simulation studies are conducted to compare the performance of the proposed method with other existing methods. A real data set is used for illustration. 相似文献
20.
Alessio Farcomeni 《Scandinavian Journal of Statistics》2015,42(4):1127-1135
We describe a generalized linear mixed model in which all random effects may evolve over time. Random effects have a discrete support and follow a first‐order Markov chain. Constraints control the size of the parameter space and possibly yield blocks of time‐constant random effects. We illustrate with an application to the relationship between health education and depression in a panel of adolescents, where the random effects are highly dimensional and separately evolve over time. 相似文献