首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This paper mainly investigates a general load-sharing parallel system having two units. First, we construct some comparisons among a load standby system, a warm standby system, a hot standby system and a cold standby system. Moreover, some stochastic comparisons between the load-sharing parallel system and one of its two components are obtained in the sense of the usual stochastic order. Finally, the residual life of this system and its properties are examined.  相似文献   

2.
ABSTRACT

An alternative approach is applied for reliability analysis of standby systems on the basis of matrix renewal function. In this regard, a single-server, two identical unit cold standby systems with an imperfect switch is considered as a three-state semi-Markov process. Several important reliability measures such as availability, mean time to failure, expected number of failures, etc., are obtained for general lifetime distributions. Also, the main results have been treated to the case of exponential lifetimes and explicit formulas obtained for this case in addition of some numerical illustrations. This approach can easily be extended to more general standby systems with different configurations.  相似文献   

3.
It is an important problem in reliability analysis to decide whether for a given k-out-of-n system the static or the sequential k-out-of-n model is appropriate. Often components are redundantly added to a system to protect against failure of the system. If the failure of any component of the system induces a higher rate of failure of the remaining components due to increased load, the sequential k-out-of-n model is appropriate. The increase of the failure rate of the remaining components after a failure of some component implies that the effects of the component redundancy are diminished. On the other hand, if all the components have the same failure distribution and whenever a failure occurs, the remaining components are not affected, the static k-out-of-n model is adequate. In this paper, we consider nonparametric hypothesis tests to make a decision between these two models. We analyze test statistics based on the profile score process as well as test statistics based on a multivariate intensity ratio and derive their asymptotic distribution. Finally, we compare the different test statistics.  相似文献   

4.
In this article, the influence of a cold standby component to the reliability of weighted k-out-of-n: G systems consisting of two different types of components is studied. Weighted k-out-of-n: G systems are generalization of k-out-of-n systems that has attracted substantial interest in reliability theory because of their various applications in engineering. A method based on residual lifetimes of mixed components is presented for computing reliability of weighted k-out-of-n: G systems with two types of components and a cold standby component. Reliability and mean time to failure of different structured systems have been computed. Moreover, obtained results are used for defining optimal system configurations that can minimize the overall system costs.  相似文献   

5.
Abstract

We consider two models of two-unit repairable systems: cold standby system and warm standby system. We suppose that the lifetimes and repair times of the units are all independent exponentially distributed random variables. Using stochastic orders we compare the lifetimes of systems under different assumptions on the parameters of exponential distributions. We also consider a cold standby system where the lifetimes and repair times of its units are not necessarily exponentially distributed.  相似文献   

6.
In this paper, we investigate the effect of a cold standby component on the mean residual life (MRL) of a system. When the system fails, a cold standby component is immediately put in operation. We particularly focus on the coherent systems in which, after putting the standby component into operation, the failure of the system is due to the next component failure. For these systems, we define MRL functions and obtain their explicit expressions. Also some stochastic ordering results are provided. Such systems include k-out-of-n systems. Hence, our results extend some results in literature.  相似文献   

7.
The traditional reliability models cannot well reflect the effect of performance dependence of subsystems on the reliability of system, and neglect the problems of initial reliability and standby redundancy. In this paper, the reliability of a parallel system with active multicomponents and a single cold-standby unit has been investigated. The simultaneously working components are dependent and the dependence is expressed by a copula function. Based on the theories of conditional probability, the explicit expressions for the reliability and the MTTF of the system, in terms of the copula function and marginal lifetime distributions, are obtained. Let the copula function be the FGM copula and the marginal lifetime distribution be exponential distribution, a system with two parallel dependent units and a single cold-standby unit is taken as an example. The effect of different degrees of dependence among components on system reliability is analyzed, and the system reliability can be expressed as the linear combination of exponential reliability functions with different failure rates. For investigating how the degree of dependence affects the mean lifetime, furthermore, the parallel system with a single cold standby, comprising different number of active components, is also presented. The effectiveness of the modeling method is verified, and the method presented provides a theoretical basis for reliability design of engineering systems and physics of failure.  相似文献   

8.
In this article, a warm standby n-unit system is studied. The system is operational as long as there is one unit normal. The unit online, which has a lifetime distribution governed by a phase-type distribution, is also attacked by a shock from some external causes. Assume that shocks arrive according to a Poisson process. Whenever an interarrival time of shock is less than a threshold, the unit online fails. The lifetimes of the units in warm standby is exponentially distributed. A repairman who can take multiple vacations repairs the failed units based on the “first-in-first-out” rule. The repair times and the vacation times of repairman are governed by different phase-type distributions. For this system, the Markov process governing the system is constructed. The system is studied in a transient and stationary regime; the availability, the reliability, the rates of occurrence of the different types of failures, and the working probability of the repairman are calculated. A numerical application is performed to illustrate the calculations.  相似文献   

9.
Abstract

For two components and one standby redundancy, we develop a characterization on the hazard rate order and the reversed hazard rate order of the redundant system lifetime in the context of mutually independent components lifetimes. Also, the likelihood ratio order is derived on the lifetime of the series system with two components lifetimes and two matched active redundancies lifetimes both following the proportional hazard model.  相似文献   

10.
ABSTRACT

In this article, we obtain exact expression for the distribution of the time to failure of discrete time cold standby repairable system under the classical assumptions that both working time and repair time of components are geometric. Our method is based on alternative representation of lifetime as a waiting time random variable on a binary sequence, and combinatorial arguments. Such an exact expression for the time to failure distribution is new in the literature. Furthermore, we obtain the probability generating function and the first two moments of the lifetime random variable.  相似文献   

11.
Stochastic orders are very useful tools to compare the lifetimes of two systems. Optimum lifetime of a series (resp. parallel) system with general standby component(s) depends on the allocation strategy of standby component(s) into the system. Here, we discuss three different models of one or more standby components. In each model, we compare different series (resp. parallel) systems (which are formed through different allocation strategies of standby component(s)) with respect to the usual stochastic order and the stochastic precedence order. The results related to the cold as well as the hot standby models are obtained as particular cases of the results discussed in this article because the model considered here is a general one.  相似文献   

12.
In this article, a two-dissimilar-component cold standby repairable system with one repairman is studied. Assume that the repair after failure for each component is delayed or undelayed. Component 2 after repair is “as good as new” while Component 1 after repair is not, but Component 1 has priority in use. Under these assumptions, using a geometric process, we consider a replacement policy N based on the failure number of Component 1. An optimal replacement policy N* is determined by minimizing the average cost rate C(N) of the system. Finally, a numerical example is given to illustrate some theoretical results and the model applicability.  相似文献   

13.
A model for the lifetime of a system is considered in which the system is susceptible to simultaneous failures of two or more components, the failures having a common external cause. Three sets of discrete failure data from the US nuclear industry are examined to motivate and illustrate the model derivation: they are for motor-operated valves, cooling fans and emergency diesel generators. To achieve target reliabilities, these components must be placed in systems that have built-in redundancy. Consequently, multiple failures due to a common cause are critical in the risk of core meltdown. Vesely has offered a simple methodology for inference, called the binomial failure rate model: external events are assumed to be governed by a Poisson shock model in which resulting shocks kill X out of m system components, X having a binomial distribution with parameters ( m , p ), 0< p <1. In many applications the binomial failure rate model fits failure data poorly, and the model has not typically been applied to probabilistic risk assessments in the nuclear industry. We introduce a realistic generalization of the binomial failure rate model by assigning a mixing distribution to the unknown parameter p . The distribution is generally identifiable, and its unique nonparametric maximum likelihood estimator can be obtained by using a simple iterative scheme.  相似文献   

14.
ABSTRACT

This paper studies a cold standby repairable system with two identical components and one repairman having multiple vacations applying matrix-analytic methods. The lifetime of the component follows a phase-type distribution. The repair times and the vacation times of the repairman are governed by different phase-type distributions, respectively. For this system, the Markov process governing the system is constructed. The system is studied in a transient and stationary regime, the availability, the reliability, the rates of occurrence of the different types of failures, and the working probability of the repairman are calculated, respectively. A numerical application is performed to illustrate the calculations.  相似文献   

15.
System characteristics of a redundant repairable system with two primary units and one standby are studied from a Bayesian viewpoint with different types of priors assumed for unknown parameters, in which the coverage factor is the same for an operating unit failure as that for a standby unit failure. Times to failure and times to repair of the operating and standby units are assumed to follow exponential distributions. When times to failure and times to repair with uncertain parameters, a Bayesian approach is adopted to evaluate system characteristics. Monte Carlo simulation is used to derive the posterior distribution for the mean time to system failure and the steady-state availability. Some numerical experiments are performed to illustrate the results derived in this paper.  相似文献   

16.
Abstract

It is known that the redundancy at the component level is better than the system level for the case of active redundancy. However, few results are available for standby redundancy due to the complexity of convolution. This note stochastically compares allocations of standby redundancies in series systems with exponential components at the component level versus the system level in sense of the likelihood ratio ordering. The established results strengthen and extend some known ones in the literature.  相似文献   

17.
In a parallel structure load-sharing system, the failure rate of the operating components will usually increase, due to the additional loading induced by the other components' failure. Hence failure dependency exists among components. To quantify the failure dependency, a dependence function is introduced. Under the assumptions that the repair time distributions of components are arbitrary and life times are exponential distributions whose failure rates vary with the number of operating components, a new load-sharing parallel system with failure dependency is proposed. To model the stochastic behavior of the system, the Semi-Markov process induced by it is given. The Semi-Markov kernel associated with the process is also presented. The availability and the time to the first system failure are obtained by employing Markov renewal theory. A numerical example is presented to illustrate the results obtained in the paper. The impact of the failure dependence on the system is also considered.  相似文献   

18.
This article we study the statistical inferences of an availability system with imperfect coverage. The time-to-failure and time-to-repair of the active and standby components are assumed to be exponential and general distribution, respectively. Assume that the coverage factor is the same for an active-component failure as that for a standby-component failure. Firstly, we propose a consistent and asymptotically normal (CAN) estimator of availability for such repairable system. Based on the CAN estimator of the system availability, interval estimation and testing (hypothesis) are performed. To implement the simulation inference for the system availability, we adopt two repair-time distributions, such as lognormal and Weibull distribution, in which three types of Weibull distribution are considered according to the shape parameter β. The component holds the decreasing repair rate (DRR), constant repair rate (CRR), and increasing repair rate (IRR) if β < 1, β = 1, and β > 1, respectively. Finally, all simulation results are displayed by appropriate tables and curves for understanding performance of the statistical inference procedures presented in this article.  相似文献   

19.
The computation of reliability characteristics of a system that consists of dependent components sometimes becomes difficult, especially when a specific type of dependence is not identified. In this paper, some systems with arbitrary dependent components are studied using copula. In the system, the components are dependent on each other and the dependent relations may be either linear or nonlinear correlation. The efficient formulas are presented to compute the reliability characteristics, such as reliability function, failure rate and meantime to failure of series, parallel and k-out-of-n systems. The reliability functions of dependant systems are compared with independent system. At last, the numerical examples are presented to illustrate the results obtained in this paper.  相似文献   

20.
Two-unit warm standby systems have been elaborately dealt within the literature. However, the study of standby systems with more than two units, though very relevant in state-of-the-art practical situations, has received little attention because of mathematical intricacies involved in analyzing them. Also, such systems have been studied assuming: (i) the lifetime or repair time of the units to be exponential, or (ii) the lifetime and repair time to be independent. The present contribution is an improvement in the state-of-the-art in the sense that three-unit warm standby system with dependent structure is shown to be capable of comprehensive analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号