首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robust regression has not had a great impact on statistical practice, although all statisticians are convinced of its importance. The procedures for robust regression currently available are complex, and computer intensive. With a modification of the Gaussian paradigm, taking into consideration outliers and leverage points, we propose an iteratively weighted least squares method which gives robust fits. The procedure is illustrated by applying it on data sets which have been previously used to illustrate robust regression methods.It is hoped that this simple, effective and accessible method will find its use in statistical practice.  相似文献   

2.
When a simulation or Monte Carlo analysis uses the same set of N samples as input for the comparison of the power of tests, the resulting estimates of power are highly correlated. As a result, the statistical analysis of these results should use weighted least squares or other equivalent procedures. A reanalysis of one simulation study (Thode et al., 1983) found that the weighted least squares estimates had much smaller standard errors than the ordinary least squares estimates. The reduction in the standard errors of the parameters was a factor between 4 and 9 for the tests found to be more powerful. The necessary calculations are described.  相似文献   

3.
The weighted least squares (WLS) estimator is often employed in linear regression using complex survey data to deal with the bias in ordinary least squares (OLS) arising from informative sampling. In this paper a 'quasi-Aitken WLS' (QWLS) estimator is proposed. QWLS modifies WLS in the same way that Cragg's quasi-Aitken estimator modifies OLS. It weights by the usual inverse sample inclusion probability weights multiplied by a parameterized function of covariates, where the parameters are chosen to minimize a variance criterion. The resulting estimator is consistent for the superpopulation regression coefficient under fairly mild conditions and has a smaller asymptotic variance than WLS.  相似文献   

4.
Recently, the authors and others have made considerable progress in developing algorithms for solving certain large-residual nonlinear least-squares problems where Gauss-Newton (GN) methods can be expected to perform poorly. These methods take account of the term in the Hessian ignored by the GN methods and use quasi-Newton procedures to update this term explicitly. This paper reviews these new approaches and discusses how they can be modified to give good performance on nonlinear models with robust loss functions where lack of scale invariance causes several new problems to arise.  相似文献   

5.
Most methods for survival prediction from high-dimensional genomic data combine the Cox proportional hazards model with some technique of dimension reduction, such as partial least squares regression (PLS). Applying PLS to the Cox model is not entirely straightforward, and multiple approaches have been proposed. The method of Park et al. (Bioinformatics 18(Suppl. 1):S120–S127, 2002) uses a reformulation of the Cox likelihood to a Poisson type likelihood, thereby enabling estimation by iteratively reweighted partial least squares for generalized linear models. We propose a modification of the method of park et al. (2002) such that estimates of the baseline hazard and the gene effects are obtained in separate steps. The resulting method has several advantages over the method of park et al. (2002) and other existing Cox PLS approaches, as it allows for estimation of survival probabilities for new patients, enables a less memory-demanding estimation procedure, and allows for incorporation of lower-dimensional non-genomic variables like disease grade and tumor thickness. We also propose to combine our Cox PLS method with an initial gene selection step in which genes are ordered by their Cox score and only the highest-ranking k% of the genes are retained, obtaining a so-called supervised partial least squares regression method. In simulations, both the unsupervised and the supervised version outperform other Cox PLS methods.  相似文献   

6.
Least trimmed squares (LTS) provides a parametric family of high breakdown estimators in regression with better asymptotic properties than least median of squares (LMS) estimators. We adapt the forward search algorithm of Atkinson (1994) to LTS and provide methods for determining the amount of data to be trimmed. We examine the efficiency of different trimming proportions by simulation and demonstrate the increasing efficiency of parameter estimation as larger proportions of data are fitted using the LTS criterion. Some standard data examples are analysed. One shows that LTS provides more stable solutions than LMS.  相似文献   

7.
8.
We present an estimating framework for quantile regression where the usual L 1-norm objective function is replaced by its smooth parametric approximation. An exact path-following algorithm is derived, leading to the well-known ‘basic’ solutions interpolating exactly a number of observations equal to the number of parameters being estimated. We discuss briefly possible practical implications of the proposed approach, such as early stopping for large data sets, confidence intervals, and additional topics for future research.  相似文献   

9.
We study nonlinear least-squares problem that can be transformed to linear problem by change of variables. We derive a general formula for the statistically optimal weights and prove that the resulting linear regression gives an optimal estimate (which satisfies an analogue of the Rao-Cramer lower bound) in the limit of small noise.  相似文献   

10.
11.
Unbiased linear estimators are considered for the model
Y(xi)=θ0+∑kj=1θjxij+ψ(xi)+εi, i=1,2,…,n,
where ψ(x) is an unknown contamination. It is assumed that |ψ(x)|?φ(6x6) where φ is a convex function. Minimax analogues of Φp-optimality criteria are introduced. It is shown that, under certain (sufficient) conditions, the least squares estimators and corresponding designs are optimal in the class of all unbiased linear estimators and designs. It is also shown that, in the case when least squares estimators with symmetric design do not lead to an optimal solution, the relative efficiency of optimal least squares is not diminishing and has a uniform lower bound.  相似文献   

12.
This paper proposes the second-order least squares estimation, which is an extension of the ordinary least squares method, for censored regression models where the error term has a general parametric distribution (not necessarily normal). The strong consistency and asymptotic normality of the estimator are derived under fairly general regularity conditions. We also propose a computationally simpler estimator which is consistent and asymptotically normal under the same regularity conditions. Finite sample behavior of the proposed estimators under both correctly and misspecified models are investigated through Monte Carlo simulations. The simulation results show that the proposed estimator using optimal weighting matrix performs very similar to the maximum likelihood estimator, and the estimator with the identity weight is more robust against the misspecification.  相似文献   

13.
The regression function R(?) to be estimated is assumed to have an expansion in terms of specified functions, orthogonalized vich respect to values of the explanatory variable. Relative precisions of OBSERVATION are assumed known. The estimate is the posterior linear mean of R(?) given the data. The investigator plots graphs of appropriate functions as an aid in eliciting his prior means and precisions for the coefficients in the expansion. The method is illustrated by an example using simulated data, an example in which effects of various dosages of Vitamin D are estimated, and an example in which a utility function is estimated.  相似文献   

14.
In this paper we explore statistical properties of some difference-based approaches to estimate an error variance for small sample based on nonparametric regression which satisfies Lipschitz condition. Our study is motivated by Tong and Wang (2005), who estimated error variance using a least squares approach. They considered the error variance as the intercept in a simple linear regression which was obtained from the expectation of their lag-k Rice estimator. Their variance estimators are highly dependent on the setting of a regressor and weight of their simple linear regression. Although this regressor and weight can be varied based on the characteristic of an unknown nonparametric mean function, Tong and Wang (2005) have used a fixed regressor and weight in a large sample and gave no indication of how to determine the regressor and the weight. In this paper, we propose a new approach via local quadratic approximation to determine this regressor and weight. Using our proposed regressor and weight, we estimate the error variance as the intercept of simple linear regression using both ordinary least squares and weighted least squares. Our approach applies to both small and large samples, while most existing difference-based methods are appropriate solely for large samples. We compare the performance of our approach with other existing approaches using extensive simulation study. The advantage of our approach is demonstrated using a real data set.  相似文献   

15.
16.
We consider variable selection in linear regression of geostatistical data that arise often in environmental and ecological studies. A penalized least squares procedure is studied for simultaneous variable selection and parameter estimation. Various penalty functions are considered including smoothly clipped absolute deviation. Asymptotic properties of penalized least squares estimates, particularly the oracle properties, are established, under suitable regularity conditions imposed on a random field model for the error process. Moreover, computationally feasible algorithms are proposed for estimating regression coefficients and their standard errors. Finite‐sample properties of the proposed methods are investigated in a simulation study and comparison is made among different penalty functions. The methods are illustrated by an ecological dataset of landcover in Wisconsin. The Canadian Journal of Statistics 37: 607–624; 2009 © 2009 Statistical Society of Canada  相似文献   

17.
Bernd Droge 《Statistics》2013,47(3):181-203
This paper is mainly concerned with deriving finite-sample properties of least squares estimators for the regression function in a nonparametric regression situation under some simplifying assumptions such as normally distributed errors with a common known variance. The selection of basis functions to be used for the construction of an estimator may be regarded as a smoothing problem, and will usually be done in a data-dependent way, A straightforward application of a result by P. J. Kernpthorne yields that, under a squared error loss, all selection procedures are admissible. Furthermore, the minimax approach provides an interpolating estimator, which is often impractical, Therefore, within a certain class of selection procedures an optimal one is determined using the minimax regret principle. It can be seen to behave similarly to the procedure minimizing either an unbiased risk estimator or, equivalently, the Cp-criterion.  相似文献   

18.
Partial least squares regression has been widely adopted within some areas as a useful alternative to ordinary least squares regression in the manner of other shrinkage methods such as principal components regression and ridge regression. In this paper we examine the nature of this shrinkage and demonstrate that partial least squares regression exhibits some undesirable properties.  相似文献   

19.
This article considers both Partial Least Squares (PLS) and Ridge Regression (RR) methods to combat multicollinearity problem. A simulation study has been conducted to compare their performances with respect to Ordinary Least Squares (OLS). With varying degrees of multicollinearity, it is found that both, PLS and RR, estimators produce significant reductions in the Mean Square Error (MSE) and Prediction Mean Square Error (PMSE) over OLS. However, from the simulation study it is evident that the RR performs better when the error variance is large and the PLS estimator achieves its best results when the model includes more variables. However, the advantage of the ridge regression method over PLS is that it can provide the 95% confidence interval for the regression coefficients while PLS cannot.  相似文献   

20.
In experimental design applications unbiased estimators si 2 of the variances σi 2 are possible. These estimators may be used in Weighted Least Squares (WLS) when estimating the parameters β. The resulting small-sample behavior is investigated in a Monte Carlo experiment. This experiment shows that an asymptotically valid covariance formula can be used if si 2 is based on, say, at least 5 observations. The WLS estimator based on estimators si 2 gives more accurate estimators of β, provided the σi 2 differ by a factor, say, 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号