首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The P-splines of Eilers and Marx (Stat Sci 11:89–121, 1996) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a reduced rank spline like smoother. P-splines have three properties that make them very popular as reduced rank smoothers: (i) the basis and the penalty are sparse, enabling efficient computation, especially for Bayesian stochastic simulation; (ii) it is possible to flexibly ‘mix-and-match’ the order of B-spline basis and penalty, rather than the order of penalty controlling the order of the basis as in spline smoothing; (iii) it is very easy to set up the B-spline basis functions and penalties. The discrete penalties are somewhat less interpretable in terms of function shape than the traditional derivative based spline penalties, but tend towards penalties proportional to traditional spline penalties in the limit of large basis size. However part of the point of P-splines is not to use a large basis size. In addition the spline basis functions arise from solving functional optimization problems involving derivative based penalties, so moving to discrete penalties for smoothing may not always be desirable. The purpose of this note is to point out that the three properties of basis-penalty sparsity, mix-and-match penalization and ease of setup are readily obtainable with B-splines subject to derivative based penalization. The penalty setup typically requires a few lines of code, rather than the two lines typically required for P-splines, but this one off disadvantage seems to be the only one associated with using derivative based penalties. As an example application, it is shown how basis-penalty sparsity enables efficient computation with tensor product smoothers of scattered data.  相似文献   

2.
Mixed effect models, which contain both fixed effects and random effects, are frequently used in dealing with correlated data arising from repeated measurements (made on the same statistical units). In mixed effect models, the distributions of the random effects need to be specified and they are often assumed to be normal. The analysis of correlated data from repeated measurements can also be done with GEE by assuming any type of correlation as initial input. Both mixed effect models and GEE are approaches requiring distribution specifications (likelihood, score function). In this article, we consider a distribution-free least square approach under a general setting with missing value allowed. This approach does not require the specifications of the distributions and initial correlation input. Consistency and asymptotic normality of the estimation are discussed.  相似文献   

3.
Abstract.  Mixed model based approaches for semiparametric regression have gained much interest in recent years, both in theory and application. They provide a unified and modular framework for penalized likelihood and closely related empirical Bayes inference. In this article, we develop mixed model methodology for a broad class of Cox-type hazard regression models where the usual linear predictor is generalized to a geoadditive predictor incorporating non-parametric terms for the (log-)baseline hazard rate, time-varying coefficients and non-linear effects of continuous covariates, a spatial component, and additional cluster-specific frailties. Non-linear and time-varying effects are modelled through penalized splines, while spatial components are treated as correlated random effects following either a Markov random field or a stationary Gaussian random field prior. Generalizing existing mixed model methodology, inference is derived using penalized likelihood for regression coefficients and (approximate) marginal likelihood for smoothing parameters. In a simulation we study the performance of the proposed method, in particular comparing it with its fully Bayesian counterpart using Markov chain Monte Carlo methodology, and complement the results by some asymptotic considerations. As an application, we analyse leukaemia survival data from northwest England.  相似文献   

4.
The mixed effects model, in its various forms, is a common model in applied statistics. A useful strategy for fitting this model implements EM-type algorithms by treating the random effects as missing data. Such implementations, however, can be painfully slow when the variances of the random effects are small relative to the residual variance. In this paper, we apply the 'working parameter' approach to derive alternative EM-type implementations for fitting mixed effects models, which we show empirically can be hundreds of times faster than the common EM-type implementations. In our limited simulations, they also compare well with the routines in S-PLUS® and Stata® in terms of both speed and reliability. The central idea of the working parameter approach is to search for efficient data augmentation schemes for implementing the EM algorithm by minimizing the augmented information over the working parameter, and in the mixed effects setting this leads to a transfer of the mixed effects variances into the regression slope parameters. We also describe a variation for computing the restricted maximum likelihood estimate and an adaptive algorithm that takes advantage of both the standard and the alternative EM-type implementations.  相似文献   

5.
We propose generalized linear models for time or age-time tables of seasonal counts, with the goal of better understanding seasonal patterns in the data. The linear predictor contains a smooth component for the trend and the product of a smooth component (the modulation) and a periodic time series of arbitrary shape (the carrier wave). To model rates, a population offset is added. Two-dimensional trends and modulation are estimated using a tensor product B-spline basis of moderate dimension. Further smoothness is ensured using difference penalties on the rows and columns of the tensor product coefficients. The optimal penalty tuning parameters are chosen based on minimization of a quasi-information criterion. Computationally efficient estimation is achieved using array regression techniques, avoiding excessively large matrices. The model is applied to female death rate in the US due to cerebrovascular diseases and respiratory diseases.  相似文献   

6.
Summary.  We introduce a flexible marginal modelling approach for statistical inference for clustered and longitudinal data under minimal assumptions. This estimated estimating equations approach is semiparametric and the proposed models are fitted by quasi-likelihood regression, where the unknown marginal means are a function of the fixed effects linear predictor with unknown smooth link, and variance–covariance is an unknown smooth function of the marginal means. We propose to estimate the nonparametric link and variance–covariance functions via smoothing methods, whereas the regression parameters are obtained via the estimated estimating equations. These are score equations that contain nonparametric function estimates. The proposed estimated estimating equations approach is motivated by its flexibility and easy implementation. Moreover, if data follow a generalized linear mixed model, with either a specified or an unspecified distribution of random effects and link function, the model proposed emerges as the corresponding marginal (population-average) version and can be used to obtain inference for the fixed effects in the underlying generalized linear mixed model, without the need to specify any other components of this generalized linear mixed model. Among marginal models, the estimated estimating equations approach provides a flexible alternative to modelling with generalized estimating equations. Applications of estimated estimating equations include diagnostics and link selection. The asymptotic distribution of the proposed estimators for the model parameters is derived, enabling statistical inference. Practical illustrations include Poisson modelling of repeated epileptic seizure counts and simulations for clustered binomial responses.  相似文献   

7.
Abstract

A number of tests have been proposed for assessing the location-scale assumption that is often invoked by practitioners. Existing approaches include Kolmogorov–Smirnov and Cramer–von Mises statistics that each involve measures of divergence between unknown joint distribution functions and products of marginal distributions. In practice, the unknown distribution functions embedded in these statistics are typically approximated using nonsmooth empirical distribution functions (EDFs). In a recent article, Li, Li, and Racine establish the benefits of smoothing the EDF for inference, though their theoretical results are limited to the case where the covariates are observed and the distributions unobserved, while in the current setting some covariates and their distributions are unobserved (i.e., the test relies on population error terms from a location-scale model) which necessarily involves a separate theoretical approach. We demonstrate how replacing the nonsmooth distributions of unobservables with their kernel-smoothed sample counterparts can lead to substantial power improvements, and extend existing approaches to the smooth multivariate and mixed continuous and discrete data setting in the presence of unobservables. Theoretical underpinnings are provided, Monte Carlo simulations are undertaken to assess finite-sample performance, and illustrative applications are provided.  相似文献   

8.
In nonparametric regression the smoothing parameter can be selected by minimizing a Mean Squared Error (MSE) based criterion. For spline smoothing one can also rewrite the smooth estimation as a Linear Mixed Model where the smoothing parameter appears as the a priori variance of spline basis coefficients. This allows to employ Maximum Likelihood (ML) theory to estimate the smoothing parameter as variance component. In this paper the relation between the two approaches is illuminated for penalized spline smoothing (P-spline) as suggested in Eilers and Marx Statist. Sci. 11(2) (1996) 89. Theoretical and empirical arguments are given showing that the ML approach is biased towards undersmoothing, i.e. it chooses a too complex model compared to the MSE. The result is in line with classical spline smoothing, even though the asymptotic arguments are different. This is because in P-spline smoothing a finite dimensional basis is employed while in classical spline smoothing the basis grows with the sample size.  相似文献   

9.
ABSTRACT

We present methods for modeling and estimation of a concurrent functional regression when the predictors and responses are two-dimensional functional datasets. The implementations use spline basis functions and model fitting is based on smoothing penalties and mixed model estimation. The proposed methods are implemented in available statistical software, allow the construction of confidence intervals for the bivariate model parameters, and can be applied to completely or sparsely sampled responses. Methods are tested to data in simulations and they show favorable results in practice. The usefulness of the methods is illustrated in an application to environmental data.  相似文献   

10.
Prediction in linear mixed models   总被引:2,自引:0,他引:2  
Following estimation of effects from a linear mixed model, it is often useful to form predicted values for certain factor/variate combinations. The process has been well defined for linear models, but the introduction of random effects into the model means that a decision has to be made about the inclusion or exclusion of random model terms from the predictions. This paper discusses the interpretation of predictions formed including or excluding random terms. Four datasets are used to illustrate circumstances where different prediction strategies may be appropriate: in an orthogonal design, an unbalanced nested structure, a model with cubic smoothing spline terms and for kriging after spatial analysis. The examples also show the need for different weighting schemes that recognize nesting and aliasing during prediction, and the necessity of being able to detect inestimable predictions.  相似文献   

11.
Three types of polynomial mixed model splines have been proposed: smoothing splines, P‐splines and penalized splines using a truncated power function basis. The close connections between these models are demonstrated, showing that the default cubic form of the splines differs only in the penalty used. A general definition of the mixed model spline is given that includes general constraints and can be used to produce natural or periodic splines. The impact of different penalties is demonstrated by evaluation across a set of functions with specific features, and shows that the best penalty in terms of mean squared error of prediction depends on both the form of the underlying function and the signal:noise ratio.  相似文献   

12.
Two different forms of Akaike's information criterion (AIC) are compared for selecting the smooth terms in penalized spline additive mixed models. The conditional AIC (cAIC) has been used traditionally as a criterion for both estimating penalty parameters and selecting covariates in smoothing, and is based on the conditional likelihood given the smooth mean and on the effective degrees of freedom for a model fit. By comparison, the marginal AIC (mAIC) is based on the marginal likelihood from the mixed‐model formulation of penalized splines which has recently become popular for estimating smoothing parameters. To the best of the authors' knowledge, the use of mAIC for selecting covariates for smoothing in additive models is new. In the competing models considered for selection, covariates may have a nonlinear effect on the response, with the possibility of group‐specific curves. Simulations are used to compare the performance of cAIC and mAIC in model selection settings that have correlated and hierarchical smooth terms. In moderately large samples, both formulations of AIC perform extremely well at detecting the function that generated the data. The mAIC does better for simple functions, whereas the cAIC is more sensitive to detecting a true model that has complex and hierarchical terms.  相似文献   

13.
This paper deals with the Bayesian analysis of the additive mixed model experiments. Consider b randomly chosen subjects who respond once to each of t treatments. The subjects are treated as random effects and the treatment effects are fixed. Suppose that some prior information is available, thus motivating a Bayesian analysis. The Bayesian computation, however, can be difficult in this situation, especially when a large number of treatments is involved. Three computational methods are suggested to perform the analysis. The exact posterior density of any parameter of interest can be simulated based on random realizations taken from a restricted multivariate t distribution. The density can also be simulated using Markov chain Monte Carlo methods. The simulated density is accurate when a large number of random realizations is taken. However, it may take substantial amount of computer time when many treatments are involved. An alternative Laplacian approximation is discussed. The Laplacian method produces smooth and very accurate approximates to posterior densities, and takes only seconds of computer time. An example of a pipeline cracks experiment is used to illustrate the Bayesian approaches and the computational methods.  相似文献   

14.
In designed experiments and in particular longitudinal studies, the aim may be to assess the effect of a quantitative variable such as time on treatment effects. Modelling treatment effects can be complex in the presence of other sources of variation. Three examples are presented to illustrate an approach to analysis in such cases. The first example is a longitudinal experiment on the growth of cows under a factorial treatment structure where serial correlation and variance heterogeneity complicate the analysis. The second example involves the calibration of optical density and the concentration of a protein DNase in the presence of sampling variation and variance heterogeneity. The final example is a multienvironment agricultural field experiment in which a yield–seeding rate relationship is required for several varieties of lupins. Spatial variation within environments, heterogeneity between environments and variation between varieties all need to be incorporated in the analysis. In this paper, the cubic smoothing spline is used in conjunction with fixed and random effects, random coefficients and variance modelling to provide simultaneous modelling of trends and covariance structure. The key result that allows coherent and flexible empirical model building in complex situations is the linear mixed model representation of the cubic smoothing spline. An extension is proposed in which trend is partitioned into smooth and non-smooth components. Estimation and inference, the analysis of the three examples and a discussion of extensions and unresolved issues are also presented.  相似文献   

15.
A penalized likelihood approach to the estimation of calibration factors in positron emission tomography (PET) is considered, in particular the problem of estimating the efficiency of PET detectors. Varying efficiencies among the detectors create a non-uniform performance and failure to account for the non-uniformities would lead to streaks in the image, so efficient estimation of the non-uniformities is desirable to reduce the propagation of noise to the final image. The relevant data set is provided by a blank scan, where a model may be derived that depends only on the sources affecting non-uniformities: inherent variation among the detector crystals and geometric effects. Physical considerations suggest a novel mixed inverse model with random crystal effects and smooth geometric effects. Using appropriate penalty terms, the penalized maximum likelihood estimates are derived and an efficient computational algorithm utilizing the fast Fourier transform is developed. Data-driven shrinkage and smoothing parameters are chosen to minimize an estimate of the predictive loss function. Various examples indicate that the approach proposed works well computationally and compares well with the standard method.  相似文献   

16.
We propose a flexible semiparametric stochastic mixed effects model for bivariate cyclic longitudinal data. The model can handle either single cycle or, more generally, multiple consecutive cycle data. The approach models the mean of responses by parametric fixed effects and a smooth nonparametric function for the underlying time effects, and the relationship across the bivariate responses by a bivariate Gaussian random field and a joint distribution of random effects. The proposed model not only can model complicated individual profiles, but also allows for more flexible within-subject and between-response correlations. The fixed effects regression coefficients and the nonparametric time functions are estimated using maximum penalized likelihood, where the resulting estimator for the nonparametric time function is a cubic smoothing spline. The smoothing parameters and variance components are estimated simultaneously using restricted maximum likelihood. Simulation results show that the parameter estimates are close to the true values. The fit of the proposed model on a real bivariate longitudinal dataset of pre-menopausal women also performs well, both for a single cycle analysis and for a multiple consecutive cycle analysis. The Canadian Journal of Statistics 48: 471–498; 2020 © 2020 Statistical Society of Canada  相似文献   

17.
We propose a general family of nonparametric mixed effects models. Smoothing splines are used to model the fixed effects and are estimated by maximizing the penalized likelihood function. The random effects are generic and are modelled parametrically by assuming that the covariance function depends on a parsimonious set of parameters. These parameters and the smoothing parameter are estimated simultaneously by the generalized maximum likelihood method. We derive a connection between a nonparametric mixed effects model and a linear mixed effects model. This connection suggests a way of fitting a nonparametric mixed effects model by using existing programs. The classical two-way mixed models and growth curve models are used as examples to demonstrate how to use smoothing spline analysis-of-variance decompositions to build nonparametric mixed effects models. Similarly to the classical analysis of variance, components of these nonparametric mixed effects models can be interpreted as main effects and interactions. The penalized likelihood estimates of the fixed effects in a two-way mixed model are extensions of James–Stein shrinkage estimates to correlated observations. In an example three nested nonparametric mixed effects models are fitted to a longitudinal data set.  相似文献   

18.
We extend the family of multivariate generalized linear mixed models to include random effects that are generated by smooth densities. We consider two such families of densities, the so-called semi-nonparametric (SNP) and smooth nonparametric (SMNP) densities. Maximum likelihood estimation, under either the SNP or the SMNP densities, is carried out using a Monte Carlo EM algorithm. This algorithm uses rejection sampling and automatically increases the MC sample size as it approaches convergence. In a simulation study we investigate the performance of these two densities in capturing the true underlying shape of the random effects distribution. We also examine the implications of misspecification of the random effects distribution on the estimation of the fixed effects and their standard errors. The impact of the assumed random effects density on the estimation of the random effects themselves is investigated in a simulation study and also in an application to a real data set.  相似文献   

19.
In many fields of empirical research one is faced with observations arising from a functional process. If so, classical multivariate methods are often not feasible or appropriate to explore the data at hand and functional data analysis is prevailing. In this paper we present a method for joint modeling of mean and variance in longitudinal data using penalized splines. Unlike previous approaches we model both components simultaneously via rich spline bases. Estimation as well as smoothing parameter selection is carried out using a mixed model framework. The resulting smooth covariance structures are then used to perform principal component analysis. We illustrate our approach by several simulations and an application to financial interest data.  相似文献   

20.
The results of quantile smoothing often show crossing curves, in particular, for small data sets. We define a surface, called a quantile sheet, on the domain of the independent variable and the probability. Any desired quantile curve is obtained by evaluating the sheet for a fixed probability. This sheet is modeled by $P$ -splines in form of tensor products of $B$ -splines with difference penalties on the array of coefficients. The amount of smoothing is optimized by cross-validation. An application for reference growth curves for children is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号