首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
针对分布式驱动电动车过驱动系统存在的冗余现象,以带有主动前轮转向系统的四轮轮毂电机驱动电动汽车为研究对象,设计了执行器故障后的容错控制算法。容错控制器采用集成控制结构,上层为运动跟踪层,基于模型预测控制算法,得到车辆跟踪期望状态所需总的力与力矩;下层为重构控制分配器,针对驱动电机的多种故障情况,以整车稳定性和安全性为目标制定重构控制分配率。通过实验表明,在高速高附的仿真工况下,面临多种执行器故障模式时,相比无控制的车辆,处于容错控制算法控制下的车辆横摆角速度最大值由0.3 rad/s降低到0.1 rad/s,质心侧偏角由0.03 rad降低到0.015 rad,显著提高了车辆的横摆稳定性与安全性能。  相似文献   

2.
为提高四轮独立驱动电动汽车横摆稳定性,在考虑纵向车速控制的基础上设计了直接横摆力矩控制策略。该控制策略由上下两层组成,上层控制器为基于车辆运行状态反馈的附加横摆力矩控制器,其控制方式为通过实际反馈的车辆状态参数与参考值对比,设计线性二次型调节器(LQR)计算目标附加横摆力矩。下层控制器为基于路面附着条件及前后轴荷比的轮毂电机转矩分配控制器。通过CarSim与Simulink建立联合仿真模型,选择双移线和正弦输入2种工况进行仿真试验。结果表明:所设计的控制策略能够使车辆质心侧偏角和横摆角速度较好地跟随参考值,可有效避免车辆侧滑失稳,提高车辆横摆稳定性和行驶安全性;与PID控制相比,LQR控制能够更有效地抑制横摆角速度振荡峰值。  相似文献   

3.
选取具有独特性能和优势的电动车作为研究对象,采用轮毂电机加上液压系统进行动力输出,设计稳定性控制器对车辆的横摆稳定性进行控制。通过分层结构的控制器对横摆力矩进行控制,利用电液协调系统调节,增强其横摆稳定性。经研究,设计的基于滑模控制横摆稳定控制器以及电液协调系统对车辆横向稳定性有很大提升。从仿真结果来看,对于质心侧偏角和横摆角速度控制效果很好,车辆抗失稳能力有很大提升,证明了电液协调系统和滑模控制的可靠性。通过NI硬件在环系统对所设计控制器进行验证,证明了其有效性和实时性。  相似文献   

4.
根据分布式驱动电动汽车电机转矩可独立控制、轮胎纵向力可灵活分配的特点,通过控制轮胎纵向力产生附加横摆力矩的方法提高车辆的横摆稳定性。设计了分层控制器对车辆横摆稳定性进行研究,上层控制器利用滑模控制方法计算保持车辆稳定的附加横摆力矩;下层控制器分别利用液压差动制动分配方法与平均分配方法分配附加横摆力矩。基于Matlab/Smulink与CarSim仿真环境,选取双移线路面进行车辆横摆稳定性仿真。研究结果表明:施加控制器作用后,可使车辆横摆角速度较好地跟随理想值并将质心侧偏角控制在2. 5°以内,车辆具有较好的轨迹保持能力与行驶稳定性。两种力矩分配方法均能得到较好的控制效果,其中平均分配方法控制效果更优。  相似文献   

5.
在Matlab/Simulink中建立了包括横摆运动、侧倾运动的八自由度整车动力学模型和车辆参考模型。采用车辆横摆角速度的状态差异法,基于模糊控制理论制定了直接横摆控制策略,实现了ESC系统对车辆的稳定性控制。对典型工况鱼钩试验进行仿真分析。结果表明:所制定的控制策略可以有效地实现横摆稳定性控制,而且减小了侧向加速度,使汽车具有一定的抗侧翻能力,提高了汽车的稳定性和安全性。  相似文献   

6.
针对匹配机械弹性电动轮(MEEW)车辆的横摆稳定性控制问题,提出一种基于主动前轮转向(AFS)与直接横摆力矩控制(DYC)的稳定性协调控制策略。为修正车辆行驶过程中的前轮转角输入,设计了基于微分平坦与RBF神经网络的AFS控制器,从而提高车辆的转向能力。针对AFS控制器在极限工况下易失效的缺陷,引入基于线性二次型调节器(LQR)的直接横摆力矩控制算法,并依照轴荷比分配四轮力矩。最后,依据机械弹性电动轮的质心侧偏角-质心侧偏角速度相平面图划分稳定域,实现AFS与DYC的协调控制。通过Matlab/Simulink和Carsim进行联合仿真,结果表明:所提出的AFS控制算法在高速高附着工况下有良好的稳定控制性能,但在高速、低附着极限工况下控制效果受到影响。而AFS/DYC协调控制策略效果较好,跟踪精度优于单一控制器,质心侧偏角和横摆角速度的最大跟踪误差仅为3.03°和1.82(°)/s,可保证汽车在极限工况下转向时的横摆稳定性。  相似文献   

7.
为了提高分布式驱动电动汽车转向行驶的横向稳定性,基于Matlab/Simulink和CarSim建立了分布式驱动电动汽车二自由度动力模型,并设计了车辆的横向稳定性控制策略。控制系统由上下两部分组成:上层力矩计算控制器,主要基于PID控制策略计算车辆所需的附加横摆力矩;下层力矩分配控制器,根据车辆转向行驶时所需附加横摆力矩的大小,在差动驱动、差动制动、摩擦制动3种力矩分配方式中选取相适应的分配方式将力矩合理分配到各个轮毂电机上。研究结果表明:所设计的横向稳定性控制系统最大能够使车辆横摆角速度减小58%,并且可以良好地追踪理想质心侧偏角,且波动减少,有效提高了车辆转向行驶时的横向稳定性。在差动驱动分配方式控制下车辆对追踪期望速度具有良好的效果;车辆所需附加横摆力矩较大时,下层力矩分配控制器采用差动制动、摩擦制动分配方式将牺牲对期望速度的追踪。  相似文献   

8.
在分析不同附着系数路面轮胎侧向力和侧偏角关系基础上,对同一附着系数路面下轮胎侧偏角进行分区、侧偏曲线线性化,建立非线性二自由度车辆模型。基于横摆角速度增益一定设计理想角传动比。对基于非线性二自由度模型和线性二自由度模型设计角传动比的车辆进行双移线仿真分析。仿真结果表明:在低附着系数路面,基于非线性二自由度模型设计的车辆方向盘转角和质心侧偏角减小,减少了驾驶员通过方向盘对车辆的修正次数,减轻了驾驶负担;横摆角速度和侧向加速度也相应减小,提高了车辆在低附着系数路面驾驶的稳定性。在高附着系数路面,基于两种不同模型设计角传动比的车辆,方向盘转角、车辆状态参数变化不大。  相似文献   

9.
为了保证电动轮汽车在高速时转向盘角阶跃工况下的操纵稳定性与行驶安全性,对电动助力转向(electric power steering,EPS)与直接横摆力矩控制(direct yaw moment control,DYC)开展联合研究,并提出一种新型的电动轮汽车EPS与DYC的协调控制方法:根据横摆角速度与质心侧偏角等车辆运动参数,经上层控制器滑模变结构控制获取协调控制权重系数K和附加横摆力矩,通过协调控制权重系数K对EPS输出的转向助力矩进行修正,同时由附加横摆力矩对4轮的纵向力进行DYC分配。利用Car Sim软件和Matlab/Simulink软件分别建立整车机械动力学模型和整车协调控制模型,将两模型联立后开展联合仿真。仿真结果表明:将EPS与DYC进行协调控制,不仅可显著提高电动轮汽车在高速时转向盘角阶跃工况下的方向稳定性,而且通过协调权重系数K适当削弱了转向助力矩,可避免在高速工况下由于驾驶员心理紧张而造成的误操作。  相似文献   

10.
基于前轮转向临界设计主动前轮转向系统(AFS)和电子稳定性控制系统(ESC)的稳定性集成控制算法。采用人-车-路闭环系统,通过计算转向临界,运用线性二次型最优控制(LQR)和迭代学习PD死区控制设计AFS和ESC集成控制算法。通过CarsimMatlab/Sumilink模拟极限工况下稳定性集成控制效果。仿真结果表明:基于转向临界设计的AFS和ESC的集成控制算法优于其单独控制算法,能更有效地控制汽车横摆角速度、质心侧偏角、侧向加速度,使车辆准确跟踪目标路径,提高车辆在极限行驶工况下的操纵稳定性和舒适性。  相似文献   

11.
以对开路面下四轮毂电机电动汽车制动能量回收控制策略为研究对象,以提高对开路面下的制动能量回收效率和制动能量回收时的制动稳定性为目标,考虑制动强度对制动能量回收效率的影响及对开路面对制动稳定性的影响,提出了当两前轮轮毂电机制动力大于制动需求时,仅由两前轮轮毂电机提供制动力,反之,由4个轮毂电机共同提供制动力,对开路面下制动时,依据两侧路面附着系数分配左、右轮制动力的控制策略;基于Matlab/Simulink搭建了制动能量回收控制模型,基于FTP-75工况及对开路面工况,分别对制动能量回收有效性及制动稳定性进行验证,仿真结果表明:一次FTP-75工况下,采用所提的控制策略能够回收0.132kW·h的能量,相对于2个轮毂电机、4个轮毂电机按固定比例提供制动力的控制策略分别提高23.3%、7.3%;在对开路面制动时能够缩小两侧车轮地面制动力的差值,减小车辆横摆力矩,有效提高汽车制动稳定性。  相似文献   

12.
为了提高轮胎行驶安全性,避免出现轮胎刺扎、爆胎等情况,同时针对车辆是否具有良好的操纵稳定性等问题,研究了一种阻尼特性随活塞位置变化而改变的位移相关减振器对匹配机械弹性车轮的汽车操纵性的影响。在传统被动式双筒减振器的基础上,建立位移相关减振器的Simulink模型,将该模型导入匹配机械弹性车轮相关参数的Carsim整车模型,在正弦与双移线两种工况下进行Simulink与Carsim的整车联合仿真试验。联合仿真试验结果与传统被动式双筒减振器的结果进行对比分析表明:在空载高速状态下,装有位移相关减振器车辆的横摆角速度与侧向加速度峰值均较小,具有更好的操纵稳定性,并且在车辆行驶平顺性上也有所改善。  相似文献   

13.
针对智能车辆的路径跟踪控制方法中传统的MPC控制器往往只考虑控制量约束和控制增量约束、未考虑输出量约束的情况,以线性2自由度车辆侧向动力学模型作为预测模型,提出了一种路径跟踪控制方法。通过将车辆在路径跟踪过程中的输出量质心侧偏角和横摆角速度约束在一个操纵稳定性状态平稳域内,将路径跟踪问题转变为在多种约束条件下求解控制系统最优值的问题,以此来跟踪目标路径。采用Carsim和Matlab/Simulink进行联合仿真验证,结果显示:所设计的控制器能较好地跟踪参考路径,控制器在跟踪目标路径的过程中表现平稳、可靠。  相似文献   

14.
在建立驾驶员模型、差动转向系统及整车机电系统耦合动力学模型的基础上,考虑了系统存在的不确定因素,分析了驱动转矩和横摆力矩之间的耦合关系。以理想横摆角速度为控制目标,研究了融合模糊逻辑和滑模变结构控制的电动轮汽车差动转向稳定性控制策略。通过模糊逻辑确定滑模趋近律在不同状态下的控制量,以补偿被控系统的不确定性和非线性的影响。仿真结果表明:所设计的稳定性控制器不仅可以有效地解决滑模变结构控制在高频下的抖振问题,而且在不同路面附着系数、不同车速以及侧向风的干扰下均能保证系统具有良好的稳定性。  相似文献   

15.
为提高半挂汽车列车高速变道行驶时的侧向稳定性,开展了挂车车轮主动转向控制研究。考虑侧风干扰和车身侧倾,建立挂车主动转向半挂汽车列车的5自由度车辆模型;以挂车的质心侧偏角和挂车质心处的侧向加速度为控制目标,设计挂车车轮主动转向的鲁棒控制器;为验证所设计控制器的有效性,基于搭建的TruckSim与Simulink联合仿真平台,在高速单移线和双移线行驶工况下,仿真研究挂车车轮主动转向的半挂汽车列车侧向动力学特性和挂车跟踪牵引车轨迹的跟随性。研究表明,所设计的挂车车轮主动转向鲁棒控制器是有效的,它能有效抑制变道时传统半挂汽车列车出现的挂车"过冲"现象,提高挂车跟踪牵引车轨迹的跟随性,并显著降低半挂汽车列车的质心侧偏角、侧向加速度和车身侧倾角。  相似文献   

16.
为改善车辆高速行驶时质心侧偏角对车辆横向控制的影响,基于车辆动力学分析与辨识提出了一种基于无迹卡尔曼滤波理论的精确计算质心侧偏角的方法,并将其应用于车辆的自动转向控制系统。为验证算法的有效性,进行了相关的仿真分析。仿真结果表明:在实时计算质心侧偏角的基础上进行车辆的性能控制,可提高车辆的瞬态控制精度,有效改善车辆的舒适性。  相似文献   

17.
为改善高速转弯工况时的汽车稳定性,研究了基于电控液压制动系统的汽车稳定性多目标协同控制方法。考虑汽车纵向、侧向、横摆、侧倾运动,建立4自由度非线性汽车动力学模型;用AMESim软件建立汽车电控液压制动系统模型,研制台架验证模型的正确性。以电控液压制动系统为执行机构,应用差动制动原理分配制动力矩;以横摆角速度和横向载荷转移率为控制目标,分别设计了单目标的汽车横向稳定性和侧倾稳定性控制策略,以及多目标协同的汽车稳定性LQR控制策略。选取J-Turn及Worst-Case典型工况进行数值仿真,对比分析了多目标协同控制策略对不同行驶工况的适用性。结果表明:基于电控液压制动系统的多目标汽车稳定性协同控制策略能明显提高汽车的抗横摆能力,有效防止汽车侧翻。  相似文献   

18.
针对无人车辆轨迹跟踪问题,为兼顾车辆轨迹跟踪和横摆稳定的双控制目标,提出了一种无人车辆轨迹跟踪与横摆稳定协调控制策略。根据车辆轨迹跟踪模型,基于快速幂次趋近律设计了车辆轨迹跟踪滑模控制器,旨在通过无人车辆自主转向控制跟踪参考轨迹。同时,利用滑模算法设计了车辆横摆稳定控制器,通过横摆力矩控制跟踪参考横摆角速度。考虑到横摆稳定控制器中横向车速未知的情况,设计了横向车速滑模观测器,从而为横摆稳定控制器提供信息输入。此外,利用横摆力矩控制量设计了前轮转向角补偿模块,通过轨迹跟踪和横摆稳定控制器的协调,进一步修正轨迹跟踪精度。利用CarSim和Simulink平台搭建了联合仿真模型。仿真结果表明:所提出的轨迹跟踪与横摆稳定协调控制策略能够实现轨迹跟踪,并兼顾车辆的横摆稳定性。  相似文献   

19.
为解决智能车辆在弯道工况下换道过程中的路径规划与跟踪控制的问题,提出一种弯道主动换道系统,主要包括基于可拓优度评价的弯道换道路径规划算法与基于模型预测控制的路径跟踪控制方法。该路径规划算法分为:上层路径生成器和下层路径选择器。上层路径生成器以不同的纵向距离采用5次多项式生成路径集合,下层路径选择器基于换道距离、侧向加速度、横摆角速度和质心侧偏角建立可拓优度评价控制器选出最优路径。通过参数优化的模型预测控制算法对规划的路径进行跟踪控制,基于Carsim和Matlab/Simulink的虚拟平台仿真验证该换道系统的有效性。结果表明:车辆在弯道上以不同的速度行驶,换道时,该系统皆能合理地规划出换道路径且能对换道路径进行准确、稳定跟踪控制。  相似文献   

20.
精准的路面不平度模型可以提高车辆在瞬态响应的估算精度。结合国标中的标准路面谱和路面形貌自相似性特点,利用傅里叶逆变换法和正方形细分法分别建立平整路面、二维路面和三维路面模型。在双移线、鱼钩工况和角阶跃典型工况下,对比分析不同路面不同平度模型下横向载荷转移率(LTR)、侧向加速度、横摆角速度和侧倾角4个瞬态响应的区别。其中三维路面模型对各响应影响最大,车辆侧翻时其各响应的数值达到侧翻阈值。验证了多维度路面模型建立的可行性,为车辆侧翻瞬态响应研究提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号