首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
By running the life tests at higher stress levels than normal operating conditions, accelerated life testing quickly yields information on the lifetime distribution of a test unit. The lifetime at the design stress is then estimated through extrapolation using a regression model. In constant-stress testing, a unit is tested at a fixed stress level until failure or the termination time point of the test, while step-stress testing allows the experimenter to gradually increase the stress levels at some pre-fixed time points during the test. In this article, the optimal k-level constant-stress and step-stress accelerated life tests are compared for the exponential failure data under Type-I censoring. The objective is to quantify the advantage of using the step-stress testing relative to the constant-stress one. A log-linear relationship between the mean lifetime parameter and stress level is assumed and the cumulative exposure model holds for the effect of changing stress in step-stress testing. The optimal design point is then determined under C-optimality, D-optimality, and A-optimality criteria. The efficiency of step-stress testing compared to constant-stress testing is discussed in terms of the ratio of optimal objective functions based on the information matrix.  相似文献   

2.
We consider in this work a k-level step-stress accelerated life-test (ALT) experiment with unequal duration steps τ=(τ1, …, τk). Censoring is allowed only at the change-stress point in the final stage. An exponential failure time distribution with mean life that is a log-linear function of stress, along with a cumulative exposure model, is considered as the working model. The problem of choosing the optimal τ is addressed using the variance-optimality criterion. Under this setting, we then show that the optimal k-level step-stress ALT model with unequal duration steps reduces just to a 2-level step-stress ALT model.  相似文献   

3.
In this paper, we consider a k-level step-stress accelerated life-testing (ALT) experiment with unequal duration steps τ=(τ1, …, τ k ). Censoring is allowed only at the change-stress point in the final stage. A general log-location-scale lifetime distribution with mean life which is a linear function of stress, along with a cumulative exposure model, is considered as the working model. Under this model, the determination of the optimal choice of τ for both Weibull and lognormal distributions are addressed using the variance–optimality criterion. Numerical results show that for a general log-location-scale distributions, the optimal k-step-stress ALT model with unequal duration steps reduces just to a 2-level step-stress ALT model.  相似文献   

4.
ABSTRACT

Based on the tampered failure rate model under the adaptive Type-II progressively hybrid censoring data, we discuss the maximum likelihood estimators of the unknown parameters and acceleration factors in the general step-stress accelerated life tests in this paper. We also construct the exact and unique confidence interval for the extended Weibull shape parameter. In the numerical analysis, we describe the simulation procedures to obtain the adaptive Type-II progressively hybrid censoring data in the step-stress accelerated life tests and present an experimental data to illustrate the performance of the estimators.  相似文献   

5.
In this paper we consider the more realistic aspect of accelerated life testing wherein the stress on an unfailed item is allowed to increase at a preassigned test time. Such tests are known as step-stress tests. Our approach is nonparametric in that we do not make any assumptions about the underlying distribution of life lengths. We introduce a model for step-stress testing which is based on the ideas of shock models and of wear processes. This model unifies and generalizes two previously proposed models for step-stress testing. We propose an estimator for the life distribution under use conditions stress and show that this estimator is strongly consistent.  相似文献   

6.
ABSTRACT

In this article, we consider a simple step-stress life test in the presence of exponentially distributed competing risks. It is assumed that the stress is changed when a pre-specified number of failures takes place. The data is assumed to be Type-II censored. We obtain the maximum likelihood estimators of the model parameters and the exact conditional distributions of the maximum likelihood estimators. Based on the conditional distribution, approximate confidence intervals (CIs) of unknown parameters have been constructed. Percentile bootstrap CIs of model parameters are also provided. Optimal test plan is addressed. We perform an extensive simulation study to observe the behaviour of the proposed method. The performances are quite satisfactory. Finally we analyse two data sets for illustrative purposes.  相似文献   

7.
Battacharyya and Soejoeti (1989) proposed the tampered failure rate model for step-stress accelerated life testing. In this note, their model is generalized from the simple (2-step) step-stress setting to the multiple (k-step, k > 2) setting. For the parametric setting where the life distribution under constant stress is Weibull, maximum likelihood estimation is investigated and the situation where the different stress levels are equispaced is looked at.  相似文献   

8.
The cumulative exposure model (CEM) is a commonly used statistical model utilized to analyze data from a step-stress accelerated life testing which is a special class of accelerated life testing (ALT). In practice, researchers conduct ALT to: (1) determine the effects of extreme levels of stress factors (e.g., temperature) on the life distribution, and (2) to gain information on the parameters of the life distribution more rapidly than under normal operating (or environmental) conditions. In literature, researchers assume that the CEM is from well-known distributions, such as the Weibull family. This study, on the other hand, considers a p-step-stress model with q stress factors from the two-parameter Birnbaum-Saunders distribution when there is a time constraint on the duration of the experiment. In this comparison paper, we consider different frameworks to numerically compute the point estimation for the unknown parameters of the CEM using the maximum likelihood theory. Each framework implements at least one optimization method; therefore, numerical examples and extensive Monte Carlo simulations are considered to compare and numerically examine the performance of the considered estimation frameworks.  相似文献   

9.
This article considers a k level step-stress accelerated life testing (ALT) on series system products, where independent Weibull-distributed lifetimes are assumed for the components. Due to cost considerations or environmental restrictions, causes of system failures are masked and type-I censored observations might occur in the collected data. Bayesian approach combined with auxiliary variables is developed for estimating the parameters of the model. Further, the reliability and hazard rate functions of the system and components are estimated at a specified time at use stress level. The proposed method is illustrated through a numerical example based on two priors and various masking probabilities.  相似文献   

10.
The step-stress model is a special case of accelerated life testing that allows for testing of units under different levels of stress with changes occurring at various intermediate stages of the experiment. Interest then lies on inference for the mean lifetime at each stress level. All step-stress models discussed so far in the literature are based on a single experiment. For the situation when data have been collected from different experiments wherein all the test units had been exposed to the same levels of stress but with possibly different points of change of stress, we introduce a model that combines the different experiments and facilitates a meta-analysis for the estimation of the mean lifetimes. We then discuss in detail the likelihood inference for the case of simple step-stress experiments under exponentially distributed lifetimes with Type-II censoring.  相似文献   

11.
Some traditional life tests result in no or very few failures by the end of test. In such cases, one approach is to do life testing at higher-than-usual stress conditions in order to obtain failures quickly. This paper discusses a k-level step-stress accelerated life test under type I progressive group-censoring with random removals. An exponential failure time distribution with mean life that is a log-linear function of stress and a cumulative exposure model are considered. We derive the maximum likelihood estimators of the model parameters and establish the asymptotic properties of the estimators. We investigate four selection criteria which enable us to obtain the optimum test plans. One is to minimize the asymptotic variance of the maximum likelihood estimator of the logarithm of the mean lifetime at use-condition, and the other three criteria are to maximize the determinant, trace and the smallest eigenvalue of Fisher's information matrix. Some numerical studies are discussed to illustrate the proposed criteria.  相似文献   

12.
In partial step-stress accelerated life testing, models extrapolating data obtained under more severe conditions to infer the lifetime distribution under normal use conditions are needed. Bhattacharyya (Invited paper for 46th session of the ISI, 1987) proposed a tampered Brownian motion process model and later derived the probability distribution from a decay process perspective without linear assumption. In this paper, the model is described and the features of the failure time distribution are discussed. The maximum likelihood estimates of the parameters in the model and their asymptotic properties are presented. An application of models for step-stress accelerated life test to fields other than engineering is described and illustrated by applying the tampered Brownian motion process model to data taken from a clinical trial.  相似文献   

13.
Most of the available literature on accelerated life testing deals with tests that use only one accelerating variable and no other explanatory variables. Frequently, however, there is a need to use more than one accelerating or other experimental variables. Examples include a test of capacitors at higher than usual levels of temperature and voltage, and a test of circuit boards at higher than usual levels of temperature, humidity, and voltage. M-step, step-stress models are extended to include k stress variables. Optimum M-step, step-stress designs with k stress variables are found. The polynomial model is considered as a special case, and a lack of fit test is discussed. Also a goodness-of-fit test is proposed and the appropriateness of using its asymptotic chi-square distribution for small samples is shown.  相似文献   

14.
In this paper, we present a statistical inference procedure for the step-stress accelerated life testing (SSALT) model with Weibull failure time distribution and interval censoring via the formulation of generalized linear model (GLM). The likelihood function of an interval censored SSALT is in general too complicated to obtain analytical results. However, by transforming the failure time to an exponential distribution and using a binomial random variable for failure counts occurred in inspection intervals, a GLM formulation with a complementary log-log link function can be constructed. The estimations of the regression coefficients used for the Weibull scale parameter are obtained through the iterative weighted least square (IWLS) method, and the shape parameter is updated by a direct maximum likelihood (ML) estimation. The confidence intervals for these parameters are estimated through bootstrapping. The application of the proposed GLM approach is demonstrated by an industrial example.  相似文献   

15.
A step-stress model has received a considerable amount of attention in recent years. In the usual step-stress experiment, a stress level is allowed to increase at each step to get rapid failure of the experimental units. The expected lifetime of the experimental unit is shortened as the stress level increases. Although extensive amount of work has been done on step-stress models, not enough attention has been paid to analyze step-stress models incorporating this information. We consider a simple step-stress model and provide Bayesian inference of the unknown parameters under cumulative exposure model assumption. It is assumed that the lifetime of the experimental units are exponentially distributed with different scale parameters at different stress levels. It is further assumed that the stress level increases at each step, hence the expected lifetime decreases. We try to incorporate this restriction using the prior assumptions. It is observed that different censoring schemes can be incorporated very easily under a general setup. Monte Carlo simulations have been performed to see the effectiveness of the proposed method, and two datasets have been analyzed for illustrative purposes.  相似文献   

16.
Abstract

Bhattacharyya and Soejoeti (Bhattacharyya, G. K., Soejoeti, Z. A. (1989 Bhattacharyya, G. K. and Soejoeti, Z. A. 1989. Tampered failure rate model for step-stress accelerated life test. Commun. Statist.—Theory Meth., 18(5): 16271643. [Taylor & Francis Online], [Web of Science ®] [Google Scholar]). Tampered failure rate model for step-stress accelerated life test. Commun. Statist.—Theory Meth. 18(5):1627–1643.) pro- posed the TFR model for step-stress accelerated life tests. Under the TFR model, this article proves that the maximum likelihood estimate of the shape parameters is unique for the Weibull distribution in a multiple step-stress accelerated life test, and investigates the accuracy of the maximum likelihood estimate using the Monte-Carlo simulation.  相似文献   

17.
Abstract

In literature, Lindley distribution is considered as an alternative to exponential distribution to fit lifetime data. In the present work, a Lindley step-stress model with independent causes of failure is proposed. An algorithm to generate random samples from the proposed model under type 1 censoring scheme is developed. Point and interval estimation of the model parameters is carried out using maximum likelihood method and percentile bootstrap approach. To understand the effectiveness of the resulting estimates, numerical illustration is provided based on simulated and real-life data sets.  相似文献   

18.
Abstract

Under progressive Type-II censoring, inference of stress-strength reliability (SSR) is studied for a general family of lower truncated distributions. When the lifetime models of the strength and stress variables have arbitrary and common parameters, maximum likelihood and pivotal quantities based generalized estimators of SSR are established, respectively. Confidence intervals are constructed based on generalized pivotal quantities and bootstrap technique under different parameter cases as well. In addition, to compare the equivalence of the strength and stress parameters, likelihood ratio testing of interested parameters is provided as a complementary. Simulation studies and two real-life data examples are provided to investigate the performance of proposed methods.  相似文献   

19.
In this article, we focus on the general k-step step-stress accelerated life tests with Type-I censoring for two-parameter Weibull distributions based on the tampered failure rate (TFR) model. We get the optimum design for the tests under the criterion of the minimization of the asymptotic variance of the maximum likelihood estimate of the pth percentile of the lifetime under the normal operating conditions. Optimum test plans for the simple step-stress accelerated life tests under Type-I censoring are developed for the Weibull distribution and the exponential distribution in particular. Finally, an example is provided to illustrate the proposed design and a sensitivity analysis is conducted to investigate the robustness of the design.  相似文献   

20.
Recently, progressively hybrid censoring schemes have become quite popular in life testing and reliability studies. In this article, the point and interval maximum-likelihood estimations of Weibull distribution parameters and the acceleration factor are considered. The estimation process is performed under Type-I progressively hybrid censored data for a step-stress partially accelerated test model. The biases and mean square errors of the maximum-likelihood estimators are computed to assess their performances in the presence of censoring developed in this article through a Monte Carlo simulation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号