首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper investigates the characterizations of certain discrete distributions within the framework of multivariate additive damage models. The univariate case for such models appoared in an article by N. Krishnaii (1974) and Rao and Rubin (1964). In this paper the survival distriution in specified and it is shown that linearity of the regression of the undamaged part on the damaged part, or the damaged part on the undamaged part leads to the characterizations of independent binomials, independent negative binomials, independent Poissons, multinomial and negative multinomial for the original p-dimensional observation.  相似文献   

2.
Powell (J. Econometrics 25 (1984) 303) considered censored regression model, and established the asymptotic normality of the least absolute deviation (LAD) estimator. But the asymptotic covariance matrices depend on the error density and are therefore difficult to estimate reliably. In the earlier papers, this difficulty may be solved by applying the bootstrap method (see, e.g., Hahn (J. Econometric Theory 11 (1995) 105); Bilias et al. (J. Econometrics 99 (2000) 373). In this paper we propose a random weighting method to approximate the distribution of the LAD estimator. The random weighting method was developed by Rubin (Ann. Statist. 9 (1981) 130), Lo (Ann. Statist. 15 (1987) 360), Tu and Zheng (Chinese J. Appl. Probab. Statist. 3 (1987) 340) with reference to some statistics such as the sample mean. Rao and Zhao (Sankhya 54 (1992) 323) applied random weighting method to approximate asymptotic distribution of M-estimators in regression models. In this paper we extend this method to the censored regression model.  相似文献   

3.
In this paper, we consider the distribution of life length of a series system with random number of components, say Z. Considering the distribution of Z as generalized Poisson, an exponential-generalized Poisson (EGP) distribution is developed. The generalized Poisson distribution is a generalization of the Poisson distribution having one extra parameter. The structural properties of the resulting distribution are presented and the maximum likelihood estimation of the parameters is investigated. Extensive simulation studies are carried out to study the performance of the estimates. The score test is developed to test the importance of the extra parameter. For illustration, two real data sets are examined and it is shown that the EGP model, presented here, fits better than the exponential–Poisson distribution.  相似文献   

4.
Marginal imputation, that consists of imputing items separately, generally leads to biased estimators of bivariate parameters such as finite population coefficients of correlation. To overcome this problem, two main approaches have been considered in the literature: the first consists of using customary imputation methods such as random hot‐deck imputation and adjusting for the bias at the estimation stage. This approach was studied in Skinner & Rao 2002 . In this paper, we extend the results of Skinner & Rao 2002 to the case of arbitrary sampling designs and three variants of random hot‐deck imputation. The second approach consists of using an imputation method, which preserves the relationship between variables. Shao & Wang 2002 proposed a joint random regression imputation procedure that succeeds in preserving the relationships between two study variables. One drawback of the Shao–Wang procedure is that it suffers from an additional variability (called the imputation variance) due to the random selection of residuals, resulting in potentially inefficient estimators. Following Chauvet, Deville, & Haziza 2011 , we propose a fully efficient version of the Shao–Wang procedure that preserves the relationship between two study variables, while virtually eliminating the imputation variance. Results of a simulation study support our findings. An application using data from the Workplace and Employees Survey is also presented. The Canadian Journal of Statistics 40: 124–149; 2012 © 2011 Statistical Society of Canada  相似文献   

5.
Rao (1963) introduced what we call an additive damage model. In this model, original observation is subjected to damage according to a specified probability law by the survival distribution. In this paper, we consider a bivariate observation with second component subjected to damage. Using the invariance of linearity of regression of the first component on the second under the transition of the second component from the original to the damaged state, we obtain the characterizations of the Poisson, binomial and negative binomial distributions within the framework of the additive damage model.  相似文献   

6.
Concerning the estimation of linear parameters in small areas, a nested-error regression model is assumed for the values of the target variable in the units of a finite population. Then, a bootstrap procedure is proposed for estimating the mean squared error (MSE) of the EBLUP under the finite population setup. The consistency of the bootstrap procedure is studied, and a simulation experiment is carried out in order to compare the performance of two different bootstrap estimators with the approximation given by Prasad and Rao [Prasad, N.G.N. and Rao, J.N.K., 1990, The estimation of the mean squared error of small-area estimators. Journal of the American Statistical Association, 85, 163–171.]. In the numerical results, one of the bootstrap estimators shows a better bias behavior than the Prasad–Rao approximation for some of the small areas and not much worse in any case. Further, it shows less MSE in situations of moderate heteroscedasticity and under mispecification of the error distribution as normal when the true distribution is logistic or Gumbel. The proposed bootstrap method can be applied to more general types of parameters (linear of not) and predictors.  相似文献   

7.
We consider a random regression model with several-fold change-points. The results for one change-point are generalized. The maximum likelihood estimator of the parameters is shown to be consistent, and the asymptotic distribution for the estimators of the coefficients is shown to be Gaussian. The estimators of the change-points converge, with n ?1 rate, to the vector whose components are the left end points of the maximizing interval with respect to each change-point. The likelihood process is asymptotically equivalent to the sum of independent compound Poisson processes.  相似文献   

8.
Over forty years ago, Grenander derived the MLE of a monotone decreasing density f with known mode. Prakasa Rao obtained the asymptotic distribution of this estimator at a fixed point x where f' (x) < 0. Here, we obtain the asymptotic distribution of this estimator at a fixed point x when f is constant and nonzero in some open neighborhood of x. This limiting distribution is expressible as the convolution of a closed-form density and a rescaled standard normal density. Groeneboom (1983) derived the aforementioned closed-form density and we provide an alternative, more direct derivation.  相似文献   

9.
In this article, we consider the class of censored exponential regression models which is very useful for modeling lifetime data. Under a sequence of Pitman alternatives, the asymptotic expansions up to order n? 1/2 of the non null distribution functions of the likelihood ratio, Wald, Rao score, and gradient statistics are derive in this class of models. The non null asymptotic distribution functions of these statistics are obtained for testing a composite null hypothesis in the presence of nuisance parameters. The power of all four tests, which are equivalent to first order, are compared based on these non null asymptotic expansions. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, we consider Monte Carlo simulations. We also present an empirical application for illustrative purposes.  相似文献   

10.
Artur J. Lemonte 《Statistics》2013,47(6):1249-1265
The class of generalized linear models with dispersion covariates, which allows us to jointly model the mean and dispersion parameters, is a natural extension to the classical generalized linear models. In this paper, we derive the asymptotic expansions under a sequence of Pitman alternatives (up to order n ?1/2) for the nonnull distribution functions of the likelihood ratio, Wald, Rao score and gradient statistics in this class of models. The asymptotic distributions of these statistics are obtained for testing a subset of regression parameters and for testing a subset of dispersion parameters. Based on these nonnull asymptotic expansions, the power of all four tests, which are equivalent to first order, are compared. Furthermore, we consider Monte Carlo simulations in order to compare the finite-sample performance of these tests in this class of models. We present two empirical applications to two real data sets for illustrative purposes.  相似文献   

11.
The exponential–Poisson (EP) distribution with scale and shape parameters β>0 and λ∈?, respectively, is a lifetime distribution obtained by mixing exponential and zero-truncated Poisson models. The EP distribution has been a good alternative to the gamma distribution for modelling lifetime, reliability and time intervals of successive natural disasters. Both EP and gamma distributions have some similarities and properties in common, for example, their densities may be strictly decreasing or unimodal, and their hazard rate functions may be decreasing, increasing or constant depending on their shape parameters. On the other hand, the EP distribution has several interesting applications based on stochastic representations involving maximum and minimum of iid exponential variables (with random sample size) which make it of distinguishable scientific importance from the gamma distribution. Given the similarities and different scientific relevance between these models, one question of interest is how to discriminate them. With this in mind, we propose a likelihood ratio test based on Cox's statistic to discriminate the EP and gamma distributions. The asymptotic distribution of the normalized logarithm of the ratio of the maximized likelihoods under two null hypotheses – data come from EP or gamma distributions – is provided. With this, we obtain the probabilities of correct selection. Hence, we propose to choose the model that maximizes the probability of correct selection (PCS). We also determinate the minimum sample size required to discriminate the EP and gamma distributions when the PCS and a given tolerance level based on some distance are before stated. A simulation study to evaluate the accuracy of the asymptotic probabilities of correct selection is also presented. The paper is motivated by two applications to real data sets.  相似文献   

12.
Starting from Milbrodt (1985), the asymptotic behaviour of experiments associated with Poisson sampling, Rejective sampling and its Sampford-Durbin modification is investigated. As superpopulation models so-called Lr-generated regression parameter families (1⩽r⩽2) are considered, allowing also the presence of nuisance parameters. Under some assumptions on the first order probabilities of inclusion it can be shown that the sampling experiments converge weakly if the underlying shift parameter families do so. In case of convergence the limit of the sampling experiments is characterized in terms of its Hellinger transforms and its Lévy-Khintchine representation, leading to criteria for the limit to be a pure Gaussian or a pure Poisson experiment respectively. These results are then applied to the situation of sampling in the presence of random non-response, and to establish local asymptotic normality (LAN) under more restrictive conditions. Applications also include asymptotic optimality properties of tests based on Horvitz-Thompson-type statistics, and LAM bounds and criteria for adaptivity, when testing or estimating a continuous linear functional in LAN situations. They especially cover the case of sampling from an unknown symmetric distribution, which has been subject to detailed investigations in the i.i.d. case.  相似文献   

13.
In life-testing and survival analysis, sometimes the components are arranged in series or parallel system and the number of components is initially unknown. Thus, the number of components, say Z, is considered as random with an appropriate probability mass function. In this paper, we model the survival data with baseline distribution as Weibull and the distribution of Z as generalized Poisson, giving rise to four parameters in the model: increasing, decreasing, bathtub and upside bathtub failure rates. Two examples are provided and the maximum-likelihood estimation of the parameters is studied. Rao's score test is developed to compare the results with the exponential Poisson model studied by Kus [17] and the exponential-generalized Poisson distribution with baseline distribution as exponential and the distribution of Z as generalized Poisson. Simulation studies are carried out to examine the performance of the estimates.  相似文献   

14.
A new five-parameter distribution called the beta Weibull-geometric (BWG) distribution is proposed. The new distribution is generated from the logit of a beta random variable and includes the Weibull-geometric distribution of Barreto-Souza et al. [The Weibull-geometric distribution, J. Stat. Comput. Simul. 81 (2011), pp. 645–657], beta Weibull (BW), beta exponential, exponentiated Weibull, and some other lifetime distributions as special cases. A comprehensive mathematical treatment of this distribution is provided. The density function can be expressed as an infinite mixture of BW densities and then we derive some mathematical properties of the new distribution from the corresponding properties of the BW distribution. The density function of the order statistics and also estimation of the stress–strength parameter are obtained using two general expressions. To estimate the model parameters, we use the maximum likelihood method and the asymptotic distribution of the estimators is also discussed. The capacity of the new distribution are examined by various tools, using two real data sets.  相似文献   

15.
The negative binomial (NB) is frequently used to model overdispersed Poisson count data. To study the effect of a continuous covariate of interest in an NB model, a flexible procedure is used to model the covariate effect by fixed-knot cubic basis-splines or B-splines with a second-order difference penalty on the adjacent B-spline coefficients to avoid undersmoothing. A penalized likelihood is used to estimate parameters of the model. A penalized likelihood ratio test statistic is constructed for the null hypothesis of the linearity of the continuous covariate effect. When the number of knots is fixed, its limiting null distribution is the distribution of a linear combination of independent chi-squared random variables, each with one degree of freedom. The smoothing parameter value is determined by setting a specified value equal to the asymptotic expectation of the test statistic under the null hypothesis. The power performance of the proposed test is studied with simulation experiments.  相似文献   

16.
M-estimation (robust estimation) for the parameters in nonlinear mixed effects models using Fisher scoring method is investigated in the article, which shares some of the features of the existing maximum likelihood estimation: consistency and asymptotic normality. Score tests for autocorrelation and random effects based on M-estimation, together with their asymptotic distribution are also studied. The performance of the test statistics are evaluated via simulations and a real data analysis of plasma concentrations data.  相似文献   

17.
The problem of estimating the Poisson mean is considered based on the two samples in the presence of uncertain prior information (not in the form of distribution) that two independent random samples taken from two possibly identical Poisson populations. The parameter of interest is λ1 from population I. Three estimators, i.e. the unrestricted estimator, restricted estimator and preliminary test estimator are proposed. Their asymptotic mean squared errors are derived and compared; parameter regions have been found for which restricted and preliminary test estimators are always asymptotically more efficient than the classical estimator. The relative dominance picture of the estimators is presented. Maximum and minimum asymptotic efficiencies of the estimators relative to the classical estimator are tabulated. A max-min rule for the size of the preliminary test is also discussed. A Monte Carlo study is presented to compare the performance of the estimator with that of Kale and Bancroft (1967).  相似文献   

18.
This article studies the asymptotic properties of the random weighted empirical distribution function of independent random variables. Suppose X1, X2, ???, Xn is a sequence of independent random variables, and this sequence is not required to be identically distributed. Denote the empirical distribution function of the sequence by Fn(x). Based on the random weighting method and Fn(x), the random weighted empirical distribution function Hn(x) is constructed and the asymptotic properties of Hn are discussed. Under weak conditions, the Glivenko–Cantelli theorem and the central limit theorem for the random weighted empirical distribution function are obtained. The obtained results have also been applied to study the distribution functions of random errors of multiple sensors.  相似文献   

19.
The Poisson distribution is a simple and popular model for count-data random variables, but it suffers from the equidispersion requirement, which is often not met in practice. While models for overdispersed counts have been discussed intensively in the literature, the opposite phenomenon, underdispersion, has received only little attention, especially in a time series context. We start with a detailed survey of distribution models allowing for underdispersion, discuss their properties and highlight possible disadvantages. After having identified two model families with attractive properties as well as only two model parameters, we combine these models with the INAR(1) model (integer-valued autoregressive), which is particularly well suited to obtain auotocorrelated counts with underdispersion. Properties of the resulting stationary INAR(1) models and approaches for parameter estimation are considered, as well as possible extensions to higher order autoregressions. Three real-data examples illustrate the application of the models in practice.  相似文献   

20.
Using a direct resampling process, a Bayesian approach is developed for the analysis of the shiftpoint problem. In many problems it is straight forward to isolate the marginal posterior distribution of the shift-point parameter and the conditional distribution of some of the parameters given the shift point and the other remaining parameters. When this is possible, a direct sampling approach is easily implemented whereby standard random number generators can be used to generate samples from the joint posterior distribution of aii the parameters in the model. This technique is illustrated with examples involving one shift for Poisson processes and regression models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号