首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the problem of estimating the scale parameter θθ of the shifted exponential distribution with unknown location based on a type II progressively censored sample. Under a large class of bowl-shaped loss functions, a smooth estimator, that dominates the minimum risk equivariant estimator of θθ, is proposed. A numerical study is performed and shows that the improved estimator yields significant risk reduction over the MRE.  相似文献   

2.
This paper is concerned with estimating the common hazard rate of two exponential distributions with unknown and ordered location parameters under a general class of bowl-shaped scale invariant loss functions. The inadmissibility of the best affine equivariant estimator is established by deriving an improved estimator. Another estimator is obtained which improves upon the best affine equivariant estimator. A class of improving estimators is derived using the integral expression of risk difference approach of Kubokawa [A unified approach to improving equivariant estimators. Ann Statist. 1994;22(1):290–299]. These results are applied to specific loss functions. It is further shown that these estimators can be derived for four important sampling schemes: (i) complete and i.i.d. sample, (ii) record values, (iii) type-II censoring, and (iv) progressive Type-II censoring. A simulation study is carried out for numerically comparing the risk performance of these proposed estimators.  相似文献   

3.
Abstract

In the present communication, we consider the estimation of the common hazard rate of several exponential distributions with unknown and unequal location parameters with a common scale parameter under a general class of bowl-shaped scale invariant loss functions. We have shown that the best affine equivariant estimator (BAEE) is inadmissible by deriving a non smooth improved estimator. Further, we have obtained a smooth estimator which improves upon the BAEE. As an application, we have obtained explicit expressions of improved estimators for special loss functions. Finally, a simulation study is carried out for numerically comparing the risk performance of various estimators.  相似文献   

4.
Let X1:, X2:, …, Xn be iidrv's with cdf F?, F?(x)=F (x-θ), R. Let T be an equivariant median-unbiased estimator of θ. Let πε(F)={G = (1 -ε) F+εH, H any cdf} and let M(G, T) be a median of T if X1 has cdf G. The oscillation of the bias of T, defined as

Bε(T)=sup (M(G1 T) :G1,G2:∈πσ:(F)} ,is considered and the estimator with the smallest B$epsi;(T) is explicitly constructed  相似文献   

5.
6.
Let X have a gamma distribution with known shape parameter θr;aL and unknown scale parameter θ. Suppose it is known that θ ≥ a for some known a > 0. An admissible minimax estimator for scale-invariant squared-error loss is presented. This estimator is the pointwise limit of a sequence of Bayes estimators. Further, the class of truncated linear estimators C = {θρρ(x) = max(a, ρ), ρ > 0} is studied. It is shown that each θρ is inadmissible and that exactly one of them is minimax. Finally, it is shown that Katz's [Ann. Math. Statist., 32, 136–142 (1961)] estimator of θ is not minimax for our loss function. Some further properties of and comparisons among these estimators are also presented.  相似文献   

7.
In this paper we assume that in a random sample of size ndrawn from a population having the pdf f(x; θ) the smallest r1 observations and the largest r2 observations are censored (r10, r20). We consider the problem of estimating θ on the basis of the middle n-r1-r2 observations when either f(x;θ)=θ-1f(x/θ) or f(x;θ) = (aθ)1f(x-θ)/aθ) where f(·) is a known pdf, a (<0) is known and θ (>0) is unknown. The minimum mean square error (MSE) linear estimator of θ proposed in this paper is a “shrinkage” of the minimum variance linear unbiased estimator of θ. We obtain explicit expressions of these estimators and their mean square errors when (i) f(·) is the uniform pdf defined on an interval of length one and (ii) f(·) is the standard exponential pdf, i.e., f(x) = exp(–x), x0. Various special cases of censoring from the left (right) and no censoring are considered.  相似文献   

8.
Eaton and Olkin (1987) discussed the problem of best equivariant estimator of the matrix scale parameter with respect to different scalar loss functions. Edwin Prabakaran and Chandrasekar (1994) developed simultaneous equivariant estimation approach and illustrated the method with examples. The problems considered in this paper are simultaneous equivariant estimation of the parameters of (i) a matrix scale model and (ii) a multivariate location-scale model. By considering matrix loss function (Klebanov, Linnik and Ruhin, 1971) a characterization of matrix minimum risk equivariant (MMRE) estimator of the matrix parameter is obtained in each case. Illustrative examples are provided in which MMRE estimators are obtained with respect to two matrix loss functions.  相似文献   

9.
We consider the problem of estimation of a two-dimensional parameter θ0=(θ1,θ2) of a Poisson process. The intensity function of the process is a smooth function with respect to θ1 and is a discontinuous function of θ2. We show the consistency and asymptotic normality of the minimum distance estimator of θ0.  相似文献   

10.
In the present article, we have studied the estimation of entropy, that is, a function of scale parameter lnσ of an exponential distribution based on doubly censored sample when the location parameter is restricted to positive real line. The estimation problem is studied under a general class of bowl-shaped non monotone location invariant loss functions. It is established that the best affine equivariant estimator (BAEE) is inadmissible by deriving an improved estimator. This estimator is non-smooth. Further, we have obtained a smooth improved estimator. A class of estimators is considered and sufficient conditions are derived under which these estimators improve upon the BAEE. In particular, using these results we have obtained the improved estimators for the squared error and the linex loss functions. Finally, we have compared the risk performance of the proposed estimators numerically. One data analysis has been performed for illustrative purposes.  相似文献   

11.
Abstract

This paper studies decision theoretic properties of Stein type shrinkage estimators in simultaneous estimation of location parameters in a multivariate skew-normal distribution with known skewness parameters under a quadratic loss. The benchmark estimator is the best location equivariant estimator which is minimax. A class of shrinkage estimators improving on the best location equivariant estimator is constructed when the dimension of the location parameters is larger than or equal to four. An empirical Bayes estimator is also derived, and motivated from the Bayesian procedure, we suggest a simple skew-adjusted shrinkage estimator and show its dominance property. The performances of these estimators are investigated by simulation.  相似文献   

12.
Let π1, …, πk be k (? 2) independent populations, where πi denotes the uniform distribution over the interval (0, θi) and θi > 0 (i = 1, …, k) is an unknown scale parameter. The population associated with the largest scale parameter is called the best population. For selecting the best population, We use a selection rule based on the natural estimators of θi, i = 1, …, k, for the case of unequal sample sizes. Consider the problem of estimating the scale parameter θL of the selected uniform population when sample sizes are unequal and the loss is measured by the squared log error (SLE) loss function. We derive the uniformly minimum risk unbiased (UMRU) estimator of θL under the SLE loss function and two natural estimators of θL are also studied. For k = 2, we derive a sufficient condition for inadmissibility of an estimator of θL. Using these condition, we conclude that the UMRU estimator and natural estimator are inadmissible. Finally, the risk functions of various competing estimators of θL are compared through simulation.  相似文献   

13.
In 1973 Balestra examined the linear model y=XB+u, where u is a normally distributed disturbance vector, with variance matrix Ω. Ω has spectral decomposition \(\sum\limits_{i = 1}^r {\lambda _i M_i } \) , and the matrices Mi are known. Estimation of ω is thus equivalent with estimation of the λi. Balestra presented the best quadratic unbiased estimator of λi. In the present paper a derivation will be given which is based on a procedure developed by this writer (1980).  相似文献   

14.
Let (θ1,x1),…,(θn,xn) be independent and identically distributed random vectors with E(xθ) = θ and Var(x|θ) = a + bθ + cθ2. Let ti be the linear Bayes estimator of θi and θ~i be the linear empirical Bayes estimator of θi as proposed in Robbins (1983). When Ex and Var x are unknown to the statistician. The regret of using θ~i instead of ti because of ignorance of the mean and the variance is ri = E(θi ? θi)2 ?E(tii)2. Under appropriate conditions cumulative regret Rn = r1+…rn is shown to have a finite limit even when n tends to infinity. The limit can be explicitly computed in terms of a,b,c and the first four moments of x.  相似文献   

15.
Abstract

In this paper, we consider the problem of estimating the quantile of a two-parameter exponential distribution with respect to an arbitrary strictly convex loss function under progressive type II censoring. Inadmissibility of the best affine equivariant (BAE) estimator is established through a conditional risk analysis. In particular we provide dominance results for quadratic, linex and absolute value loss functions. Further, a class of dominating estimators is derived using the IERD (integral expression of risk difference) approach of Kubokawa (1994 Kubokawa, T. 1994. A unified approach to improving equivariant estimators. The Annals of Statistics 22 (1):2909. doi:10.1214/aos/1176325369.[Crossref], [Web of Science ®] [Google Scholar]). In sequel the generalized Bayes estimator is shown to improve the BAE estimator.  相似文献   

16.
Given λ∈(0-,l), let xλ(F) denote the unique λ-quantile of the distribution F. A distribution-free median-unbiased estimator of xλ(F) is explicitly constructed  相似文献   

17.
Yo Sheena † 《Statistics》2013,47(5):371-379
We consider the estimation of Σ of the p-dimensional normal distribution Np (0, Σ) when Σ?=?θ0 Ip ?+?θ1 aa′, where a is an unknown p-dimensional normalized vector and θ0?>?0, θ1?≥?0 are also unknown. First, we derive the restricted maximum likelihood (REML) estimator. Second, we propose a new estimator, which dominates the REML estimator with respect to Stein's loss function. Finally, we carry out Monte Carlo simulation to investigate the magnitude of the new estimator's superiority.  相似文献   

18.
19.
For estimating a normal variance under the squared error loss function it is well known that the best affine (location and scale) equivariant estimator, which is better than the maximum likelihood estimator as well as the unbiased estimator, is also inadmissible. The improved estimators, e.g., stein type, brown type and Brewster–Zidek type, are all scale equivariant but not location invariant. Lately, a good amount of research has been done to compare the improved estimators in terms of risk, but comparatively less attention had been paid to compare these estimators in terms of the Pitman nearness criterion (PNC) as well as the stochastic domination criterion (SDC). In this paper, we have undertaken a comprehensive study to compare various variance estimators in terms of the PNC and the SDC, which has been long overdue. Finally, using the results for risk, the PNC and the SDC, we propose a compromise estimator (sort of a robust estimator) which appears to work ‘well’ under all the criteria discussed above.  相似文献   

20.
We consider the estimation of a location parameter θ in a one-sample problem. A measure of the asymptotic performance of an estimator sequence {Tn} = T is given by the exponential rate of convergence to zero of the tail probability, which for consistent estimator sequences is bounded by a constant, B (θ, ?), called the Bahadur bound. We consider two consistent estimators: the maximum-likelihood estimator (mle) and a consistent estimator based on a likelihood-ratio statistic, which we call the probability-ratio estimator (pre). In order to compare the local behaviour of these estimators, we obtain Taylor series expansions in ? for B (θ, ?) and the exponential rates of the mle and pre. Finally, some numerical work is presented in which we consider a variety of underlying distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号