首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper we design a sure independent ranking and screening procedure for censored regression (cSIRS, for short) with ultrahigh dimensional covariates. The inverse probability weighted cSIRS procedure is model-free in the sense that it does not specify a parametric or semiparametric regression function between the response variable and the covariates. Thus, it is robust to model mis-specification. This model-free property is very appealing in ultrahigh dimensional data analysis, particularly when there is lack of information for the underlying regression structure. The cSIRS procedure is also robust in the presence of outliers or extreme values as it merely uses the rank of the censored response variable. We establish both the sure screening and the ranking consistency properties for the cSIRS procedure when the number of covariates p satisfies \(p=o\{\exp (an)\}\), where a is a positive constant and n is the available sample size. The advantages of cSIRS over existing competitors are demonstrated through comprehensive simulations and an application to the diffuse large-B-cell lymphoma data set.  相似文献   

2.
This paper is concerned with the conditional feature screening for ultra-high dimensional right censored data with some previously identified important predictors. A new model-free conditional feature screening approach, conditional correlation rank sure independence screening, has been proposed and investigated theoretically. The suggested conditional screening procedure has several desirable merits. First, it is model free, and thus robust to model misspecification. Second, it has the advantage of robustness of heavy-tailed distributions of the response and the presence of potential outliers in response. Third, it is naturally applicable to complete data when there is no censoring. Through simulation studies, we demonstrate that the proposed approach outperforms the CoxCS of Hong et al. under some circumstances. A real dataset is used to illustrate the usefulness of the proposed conditional screening method.  相似文献   

3.
We consider the problem of variable screening in ultra-high-dimensional generalized linear models (GLMs) of nonpolynomial orders. Since the popular SIS approach is extremely unstable in the presence of contamination and noise, we discuss a new robust screening procedure based on the minimum density power divergence estimator (MDPDE) of the marginal regression coefficients. Our proposed screening procedure performs well under pure and contaminated data scenarios. We provide a theoretical motivation for the use of marginal MDPDEs for variable screening from both population as well as sample aspects; in particular, we prove that the marginal MDPDEs are uniformly consistent leading to the sure screening property of our proposed algorithm. Finally, we propose an appropriate MDPDE-based extension for robust conditional screening in GLMs along with the derivation of its sure screening property. Our proposed methods are illustrated through extensive numerical studies along with an interesting real data application.  相似文献   

4.
This article is concerned with feature screening for the ultrahigh dimensional discriminant analysis. A variance ratio screening method is proposed and the sure screening property of this screening procedure is proved. The proposed method has some additional desirable features. First, it is model-free which does not require specific discriminant model and can be directly applied to the multi-categories situation. Second, it can effectively screen main effects and interaction effects simultaneously. Third, it is relatively inexpensive in computational cost because of the simple structure. The finite sample properties are performed through the Monte Carlo simulation studies and two real-data analyses.  相似文献   

5.
This paper develops a robust estimation procedure for the varying-coefficient partially linear model via local rank technique. The new procedure provides a highly efficient and robust alternative to the local linear least-squares method. In other words, the proposed method is highly efficient across a wide class of non-normal error distributions and it only loses a small amount of efficiency for normal error. Moreover, a test for the hypothesis of constancy for the nonparametric component is proposed. The test statistic is simple and thus the test procedure can be easily implemented. We conduct Monte Carlo simulation to examine the finite sample performance of the proposed procedures and apply them to analyse the environment data set. Both the theoretical and the numerical results demonstrate that the performance of our approach is at least comparable to those existing competitors.  相似文献   

6.
In practice, the presence of influential observations may lead to misleading results in variable screening problems. We, therefore, propose a robust variable screening procedure for high-dimensional data analysis in this paper. Our method consists of two steps. The first step is to define a new high-dimensional influence measure and propose a novel influence diagnostic procedure to remove those unusual observations. The second step is to utilize the sure independence screening procedure based on distance correlation to select important variables in high-dimensional regression analysis. The new influence measure and diagnostic procedure that we developed are model free. To confirm the effectiveness of the proposed method, we conduct simulation studies and a real-life data analysis to illustrate the merits of the proposed approach over some competing methods. Both the simulation results and the real-life data analysis demonstrate that the proposed method can greatly control the adverse effect after detecting and removing those unusual observations, and performs better than the competing methods.  相似文献   

7.
Most feature screening methods for ultrahigh-dimensional classification explicitly or implicitly assume the covariates are continuous. However, in the practice, it is quite common that both categorical and continuous covariates appear in the data, and applicable feature screening method is very limited. To handle this non-trivial situation, we propose an entropy-based feature screening method, which is model free and provides a unified screening procedure for both categorical and continuous covariates. We establish the sure screening and ranking consistency properties of the proposed procedure. We investigate the finite sample performance of the proposed procedure by simulation studies and illustrate the method by a real data analysis.  相似文献   

8.
A variable screening procedure via correlation learning was proposed in Fan and Lv (2008) to reduce dimensionality in sparse ultra-high dimensional models. Even when the true model is linear, the marginal regression can be highly nonlinear. To address this issue, we further extend the correlation learning to marginal nonparametric learning. Our nonparametric independence screening is called NIS, a specific member of the sure independence screening. Several closely related variable screening procedures are proposed. Under general nonparametric models, it is shown that under some mild technical conditions, the proposed independence screening methods enjoy a sure screening property. The extent to which the dimensionality can be reduced by independence screening is also explicitly quantified. As a methodological extension, a data-driven thresholding and an iterative nonparametric independence screening (INIS) are also proposed to enhance the finite sample performance for fitting sparse additive models. The simulation results and a real data analysis demonstrate that the proposed procedure works well with moderate sample size and large dimension and performs better than competing methods.  相似文献   

9.
Feature screening and variable selection are fundamental in analysis of ultrahigh-dimensional data, which are being collected in diverse scientific fields at relatively low cost. Distance correlation-based sure independence screening (DC-SIS) has been proposed to perform feature screening for ultrahigh-dimensional data. The DC-SIS possesses sure screening property and filters out unimportant predictors in a model-free manner. Like all independence screening methods, however, it fails to detect the truly important predictors which are marginally independent of the response variable due to correlations among predictors. When there are many irrelevant predictors which are highly correlated with some strongly active predictors, the independence screening may miss other active predictors with relatively weak marginal signals. To improve the performance of DC-SIS, we introduce an effective iterative procedure based on distance correlation to detect all truly important predictors and potentially interactions in both linear and nonlinear models. Thus, the proposed iterative method possesses the favourable model-free and robust properties. We further illustrate its excellent finite-sample performance through comprehensive simulation studies and an empirical analysis of the rat eye expression data set.  相似文献   

10.
The generalized secant hyperbolic distribution (GSHD) was recently introduced as a modeling tool in data analysis. The GSHD is a unimodal distribution that is completely specified by location, scale, and shape parameters. It has also been shown elsewhere that the rank procedures of location are regular, robust, and asymptotically fully efficient. In this article, we study certain tail weight measures for the GSHD and introduce a tail-adaptive rank procedure of location based on those tail weight measures. We investigate the properties of the new adaptive rank procedure and compare it to some conventional estimators.  相似文献   

11.
Case‐cohort design has been demonstrated to be an economical and efficient approach in large cohort studies when the measurement of some covariates on all individuals is expensive. Various methods have been proposed for case‐cohort data when the dimension of covariates is smaller than sample size. However, limited work has been done for high‐dimensional case‐cohort data which are frequently collected in large epidemiological studies. In this paper, we propose a variable screening method for ultrahigh‐dimensional case‐cohort data under the framework of proportional model, which allows the covariate dimension increases with sample size at exponential rate. Our procedure enjoys the sure screening property and the ranking consistency under some mild regularity conditions. We further extend this method to an iterative version to handle the scenarios where some covariates are jointly important but are marginally unrelated or weakly correlated to the response. The finite sample performance of the proposed procedure is evaluated via both simulation studies and an application to a real data from the breast cancer study.  相似文献   

12.
In this article, a new model-free feature screening method named after probability density (mass) function distance (PDFD) correlation is presented for ultrahigh-dimensional data analysis. We improve the fused-Kolmogorov filter (F-KOL) screening procedure through probability density distribution. The proposed method is also fully nonparametric and can be applied to more general types of predictors and responses, including discrete and continuous random variables. Kernel density estimate method and numerical integration are applied to obtain the estimator we proposed. The results of simulation studies indicate that the fused-PDFD performs better than other existing screening methods, such as F-KOL filter, sure-independent screening (SIS), sure independent ranking and screening (SIRS), distance correlation sure-independent screening (DCSIS) and robust ranking correlation screening (RRCS). Finally, we demonstrate the validity of fused-PDFD by a real data example.  相似文献   

13.
In this paper, we investigate model selection and model averaging based on rank regression. Under mild conditions, we propose a focused information criterion and a frequentist model averaging estimator for the focused parameters in rank regression model. Compared to the least squares method, the new method is not only highly efficient but also robust. The large sample properties of the proposed procedure are established. The finite sample properties are investigated via extensive Monte Claro simulation study. Finally, we use the Boston Housing Price Dataset to illustrate the use of the proposed rank methods.  相似文献   

14.
In recent years, numerous feature screening schemes have been developed for ultra-high dimensional standard survival data with only one failure event. Nevertheless, existing literature pays little attention to related investigations for competing risks data, in which subjects suffer from multiple mutually exclusive failures. In this article, we develop a new marginal feature screening for ultra-high dimensional time-to-event data to allow for competing risks. The proposed procedure is model-free, and robust against heavy-tailed distributions and potential outliers for time to the type of failure of interest. Apart from this, it is invariant to any monotone transformation of event time of interest. Under rather mild assumptions, it is shown that the newly suggested approach possesses the ranking consistency and sure independence screening properties. Some numerical studies are conducted to evaluate the finite-sample performance of our method and make a comparison with its competitor, while an application to a real data set is provided to serve as an illustration.  相似文献   

15.
The additive Cox model is flexible and powerful for modelling the dynamic changes of regression coefficients in the survival analysis. This paper is concerned with feature screening for the additive Cox model with ultrahigh-dimensional covariates. The proposed screening procedure can effectively identify active predictors. That is, with probability tending to one, the selected variable set includes the actual active predictors. In order to carry out the proposed procedure, we propose an effective algorithm and establish the ascent property of the proposed algorithm. We further prove that the proposed procedure possesses the sure screening property. Furthermore, we examine the finite sample performance of the proposed procedure via Monte Carlo simulations, and illustrate the proposed procedure by a real data example.  相似文献   

16.
The ranked set samples and median ranked set samples in particular have been used extensively in the literature due to many reasons. In some situations, the experimenter may not be able to quantify or measure the response variable due to the high cost of data collection, however it may be easier to rank the subject of interest. The purpose of this article is to study the asymptotic distribution of the parameter estimators of the simple linear regression model. We show that these estimators using median ranked set sampling scheme converge in distribution to the normal distribution under weak conditions. Moreover, we derive large sample confidence intervals for the regression parameters as well as a large sample prediction interval for new observation. Also, we study the properties of these estimators for small sample setup and conduct a simulation study to investigate the behavior of the distributions of the proposed estimators.  相似文献   

17.
Ultra-high dimensional data arise in many fields of modern science, such as medical science, economics, genomics and imaging processing, and pose unprecedented challenge for statistical analysis. With such rapid-growth size of scientific data in various disciplines, feature screening becomes a primary step to reduce the high dimensionality to a moderate scale that can be handled by the existing penalized methods. In this paper, we introduce a simple and robust feature screening method without any model assumption to tackle high dimensional censored data. The proposed method is model-free and hence applicable to a general class of survival models. The sure screening and ranking consistency properties without any finite moment condition of the predictors and the response are established. The computation of the proposed method is rather straightforward. Finite sample performance of the newly proposed method is examined via extensive simulation studies. An application is illustrated with the gene association study of the mantle cell lymphoma.  相似文献   

18.
In this paper, we construct a new ranked set sampling protocol that maximizes the Pitman asymptotic efficiency of the signed rank test. The new sampling design is a function of the set size and independent order statistics. If the set size is odd and the underlying distribution is symmetric and unimodal, then the new sampling protocol quantifies only the middle observation. On the other hand, if the set size is even, the new sampling design quantifies the two middle observations. This data collection procedure for use in the signed rank test outperforms the data collection procedure in the standard ranked set sample. We show that the exact null distribution of the signed rank statistic WRSS+ based on a data set generated by the new ranked set sample design for odd set sizes is the same as the null distribution of the simple random sample signed rank statistic WSRS+ based on the same number of measured observations. For even set sizes, the exact null distribution of WRSS+ is simulated.  相似文献   

19.
Quantile regression is a flexible approach to assessing covariate effects on failure time, which has attracted considerable interest in survival analysis. When the dimension of covariates is much larger than the sample size, feature screening and variable selection become extremely important and indispensable. In this article, we introduce a new feature screening method for ultrahigh dimensional censored quantile regression. The proposed method can work for a general class of survival models, allow for heterogeneity of data and enjoy desirable properties including the sure screening property and the ranking consistency property. Moreover, an iterative version of screening algorithm has also been proposed to accommodate more complex situations. Monte Carlo simulation studies are designed to evaluate the finite sample performance under different model settings. We also illustrate the proposed methods through an empirical analysis.  相似文献   

20.
Conover and Iman (1976), Iman (1974), and Iman and Conover (1976) have found the rank transform test to be robust and powerful when testing for interaction in experimental designs.The current study shows that, insofar as tests for interactions

are concerned, the rank transform test is robust and powerful in some circumstances but is dramatically nonrobust and manifests power significantly below that of the usual F test in some cases. Therefore, this procedure should be used only withcaution when employed in designs suchas those examined here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号