首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Thin plate regression splines   总被引:2,自引:0,他引:2  
Summary. I discuss the production of low rank smoothers for d  ≥ 1 dimensional data, which can be fitted by regression or penalized regression methods. The smoothers are constructed by a simple transformation and truncation of the basis that arises from the solution of the thin plate spline smoothing problem and are optimal in the sense that the truncation is designed to result in the minimum possible perturbation of the thin plate spline smoothing problem given the dimension of the basis used to construct the smoother. By making use of Lanczos iteration the basis change and truncation are computationally efficient. The smoothers allow the use of approximate thin plate spline models with large data sets, avoid the problems that are associated with 'knot placement' that usually complicate modelling with regression splines or penalized regression splines, provide a sensible way of modelling interaction terms in generalized additive models, provide low rank approximations to generalized smoothing spline models, appropriate for use with large data sets, provide a means for incorporating smooth functions of more than one variable into non-linear models and improve the computational efficiency of penalized likelihood models incorporating thin plate splines. Given that the approach produces spline-like models with a sparse basis, it also provides a natural way of incorporating unpenalized spline-like terms in linear and generalized linear models, and these can be treated just like any other model terms from the point of view of model selection, inference and diagnostics.  相似文献   

2.
Quadratic programming is a versatile tool for calculating estimates in penalized regression. It can be used to produce estimates based on L 1 roughness penalties, as in total variation denoising. In particular, it can calculate estimates when the roughness penalty is the total variation of a derivative of the estimate. Combining two roughness penalties, the total variation and total variation of the third derivative, results in an estimate with continuous second derivative but controls the number of spurious local extreme values. A multiresolution criterion may be included in a quadratic program to achieve local smoothing without having to specify smoothing parameters.  相似文献   

3.
Three types of polynomial mixed model splines have been proposed: smoothing splines, P‐splines and penalized splines using a truncated power function basis. The close connections between these models are demonstrated, showing that the default cubic form of the splines differs only in the penalty used. A general definition of the mixed model spline is given that includes general constraints and can be used to produce natural or periodic splines. The impact of different penalties is demonstrated by evaluation across a set of functions with specific features, and shows that the best penalty in terms of mean squared error of prediction depends on both the form of the underlying function and the signal:noise ratio.  相似文献   

4.
Spatially-adaptive Penalties for Spline Fitting   总被引:2,自引:0,他引:2  
The paper studies spline fitting with a roughness penalty that adapts to spatial heterogeneity in the regression function. The estimates are p th degree piecewise polynomials with p − 1 continuous derivatives. A large and fixed number of knots is used and smoothing is achieved by putting a quadratic penalty on the jumps of the p th derivative at the knots. To be spatially adaptive, the logarithm of the penalty is itself a linear spline but with relatively few knots and with values at the knots chosen to minimize the generalized cross validation (GCV) criterion. This locally-adaptive spline estimator is compared with other spline estimators in the literature such as cubic smoothing splines and knot-selection techniques for least squares regression. Our estimator can be interpreted as an empirical Bayes estimate for a prior allowing spatial heterogeneity. In cases of spatially heterogeneous regression functions, empirical Bayes confidence intervals using this prior achieve better pointwise coverage probabilities than confidence intervals based on a global-penalty parameter. The method is developed first for univariate models and then extended to additive models.  相似文献   

5.
We consider the problem of estimating the mean of a multivariate distribution. As a general alternative to penalized least squares estimators, we consider minimax estimators for squared error over a restricted parameter space where the restriction is determined by the penalization term. For a quadratic penalty term, the minimax estimator among linear estimators can be found explicitly. It is shown that all symmetric linear smoothers with eigenvalues in the unit interval can be characterized as minimax linear estimators over a certain parameter space where the bias is bounded. The minimax linear estimator depends on smoothing parameters that must be estimated in practice. Using results in Kneip (1994), this can be done using Mallows' C L -statistic and the resulting adaptive estimator is now asymptotically minimax linear. The minimax estimator is compared to the penalized least squares estimator both in finite samples and asymptotically.  相似文献   

6.
Penalized likelihood methods provide a range of practical modelling tools, including spline smoothing, generalized additive models and variants of ridge regression. Selecting the correct weights for penalties is a critical part of using these methods and in the single-penalty case the analyst has several well-founded techniques to choose from. However, many modelling problems suggest a formulation employing multiple penalties, and here general methodology is lacking. A wide family of models with multiple penalties can be fitted to data by iterative solution of the generalized ridge regression problem minimize || W 1/2 ( Xp − y ) ||2ρ+Σ i =1 m  θ i p ' S i p ( p is a parameter vector, X a design matrix, S i a non-negative definite coefficient matrix defining the i th penalty with associated smoothing parameter θ i , W a diagonal weight matrix, y a vector of data or pseudodata and ρ an 'overall' smoothing parameter included for computational efficiency). This paper shows how smoothing parameter selection can be performed efficiently by applying generalized cross-validation to this problem and how this allows non-linear, generalized linear and linear models to be fitted using multiple penalties, substantially increasing the scope of penalized modelling methods. Examples of non-linear modelling, generalized additive modelling and anisotropic smoothing are given.  相似文献   

7.
An exposition on the use of O'Sullivan penalized splines in contemporary semiparametric regression, including mixed model and Bayesian formulations, is presented. O'Sullivan penalized splines are similar to P-splines, but have the advantage of being a direct generalization of smoothing splines. Exact expressions for the O'Sullivan penalty matrix are obtained. Comparisons between the two types of splines reveal that O'Sullivan penalized splines more closely mimic the natural boundary behaviour of smoothing splines. Implementation in modern computing environments such as Matlab , r and bugs is discussed.  相似文献   

8.
Penalized spline regression using a mixed effects representation is one of the most popular nonparametric regression tools to estimate an unknown regression function $f(\cdot )$ . In this context testing for polynomial regression against a general alternative is equivalent to testing for a zero variance component. In this paper, we fill the gap between different published null distributions of the corresponding restricted likelihood ratio test under different assumptions. We show that: (1) the asymptotic scenario is determined by the choice of the penalty and not by the choice of the spline basis or number of knots; (2) non-standard asymptotic results correspond to common penalized spline penalties on derivatives of $f(\cdot )$ , which ensure good power properties; and (3) standard asymptotic results correspond to penalized spline penalties on $f(\cdot )$ itself, which lead to sizeable power losses under smooth alternatives. We provide simple and easy to use guidelines for the restricted likelihood ratio test in this context.  相似文献   

9.
ABSTRACT

We present methods for modeling and estimation of a concurrent functional regression when the predictors and responses are two-dimensional functional datasets. The implementations use spline basis functions and model fitting is based on smoothing penalties and mixed model estimation. The proposed methods are implemented in available statistical software, allow the construction of confidence intervals for the bivariate model parameters, and can be applied to completely or sparsely sampled responses. Methods are tested to data in simulations and they show favorable results in practice. The usefulness of the methods is illustrated in an application to environmental data.  相似文献   

10.
P-splines regression provides a flexible smoothing tool. In this paper we consider difference type penalties in a context of nonparametric generalized linear models, and investigate the impact of the order of the differencing operator. Minimizing Akaike’s information criterion we search for a possible best data-driven value of the differencing order. Theoretical derivations are established for the normal model and provide insights into a possible ‘optimal’ choice of the differencing order and its interrelation with other parameters. Applications of the selection procedure to non-normal models, such as Poisson models, are given. Simulation studies investigate the performance of the selection procedure and we illustrate its use on real data examples.  相似文献   

11.
In nonparametric regression the smoothing parameter can be selected by minimizing a Mean Squared Error (MSE) based criterion. For spline smoothing one can also rewrite the smooth estimation as a Linear Mixed Model where the smoothing parameter appears as the a priori variance of spline basis coefficients. This allows to employ Maximum Likelihood (ML) theory to estimate the smoothing parameter as variance component. In this paper the relation between the two approaches is illuminated for penalized spline smoothing (P-spline) as suggested in Eilers and Marx Statist. Sci. 11(2) (1996) 89. Theoretical and empirical arguments are given showing that the ML approach is biased towards undersmoothing, i.e. it chooses a too complex model compared to the MSE. The result is in line with classical spline smoothing, even though the asymptotic arguments are different. This is because in P-spline smoothing a finite dimensional basis is employed while in classical spline smoothing the basis grows with the sample size.  相似文献   

12.
Accurate estimation of an underlying function and its derivatives is one of the central problems in statistics. Parametric forms are often proposed based on the expert opinion or prior knowledge of the underlying function. However, these strict parametric assumptions may result in biased estimates when they are not completely accurate. Meanwhile, nonparametric smoothing methods, which do not impose any parametric form, are quite flexible. We propose a parametric penalized spline smoothing method, which has the same flexibility as the nonparametric smoothing methods. It also uses the prior knowledge of the underlying function by defining an additional penalty term using the distance of the fitted function to the assumed parametric function. Our simulation studies show that the parametric penalized spline smoothing method can obtain more accurate estimates of the function and its derivatives than the penalized spline smoothing method. The parametric penalized spline smoothing method is also demonstrated by estimating the human height function and its derivatives from the real data.  相似文献   

13.
In this article, the partially linear single-index models are discussed based on smoothing spline and average derivative estimation method. This proposed technique consists of two stages: one is to estimate the vector parameter in the linear part using the smoothing cubic spline method, simultaneously, obtaining the estimator of unknown single-index function; the other is to estimate the single-index coefficients in the single-index part by the using average derivative estimator procedure. Some simulated and real examples are presented to illustrate the performance of this method.  相似文献   

14.
Summary.  Hansen, Kooperberg and Sardy introduced a family of continuous, piecewise linear functions defined over adaptively selected triangulations of the plane as a general approach to statistical modelling of bivariate densities and regression and hazard functions. These triograms enjoy a natural affine equivariance that offers distinct advantages over competing tensor product methods that are more commonly used in statistical applications. Triograms employ basis functions consisting of linear 'tent functions' defined with respect to a triangulation of a given planar domain. As in knot selection for univariate splines, Hansen and colleagues adopted the regression spline approach of Stone. Vertices of the triangulation are introduced or removed sequentially in an effort to balance fidelity to the data and parsimony. We explore a smoothing spline variant of the triogram model based on a roughness penalty adapted to the piecewise linear structure of the triogram model. We show that the roughness penalty proposed may be interpreted as a total variation penalty on the gradient of the fitted function. The methods are illustrated with real and artificial examples, including an application to estimated quantile surfaces of land value in the Chicago metropolitan area.  相似文献   

15.
Summary. It is occasionally necessary to smooth data over domains in R 2 with complex irregular boundaries or interior holes. Traditional methods of smoothing which rely on the Euclidean metric or which measure smoothness over the entire real plane may then be inappropriate. This paper introduces a bivariate spline smoothing function defined as the minimizer of a penalized sum-of-squares functional. The roughness penalty is based on a partial differential operator and is integrated only over the problem domain by using finite element analysis. The method is motivated by and applied to two sample smoothing problems and is compared with the thin plate spline.  相似文献   

16.
Pricing of American options in discrete time is considered, where the option is allowed to be based on several underlying stocks. It is assumed that the price processes of the underlying stocks are given by Markov processes. We use the Monte Carlo approach to generate artificial sample paths of these price processes, and then we use nonparametric regression estimates to estimate from this data so-called continuation values, which are defined as mean values of the American option for given values of the underlying stocks at time t subject to the constraint that the option is not exercised at time t. As nonparametric regression estimates we use least squares estimates with complexity penalties, which include as special cases least squares spline estimates, least squares neural networks, smoothing splines and orthogonal series estimates. General results concerning rate of convergence are presented and applied to derive results for the special cases mentioned above. Furthermore the pricing of American options is illustrated by simulated data.  相似文献   

17.
Straightforward intermediate rank tensor product smoothing in mixed models   总被引:3,自引:0,他引:3  
Tensor product smooths provide the natural way of representing smooth interaction terms in regression models because they are invariant to the units in which the covariates are measured, hence avoiding the need for arbitrary decisions about relative scaling of variables. They would also be the natural way to represent smooth interactions in mixed regression models, but for the fact that the tensor product constructions proposed to date are difficult or impossible to estimate using most standard mixed modelling software. This paper proposes a new approach to the construction of tensor product smooths, which allows the smooth to be written as the sum of some fixed effects and some sets of i.i.d. Gaussian random effects: no previously published construction achieves this. Because of the simplicity of this random effects structure, our construction is useable with almost any flexible mixed modelling software, allowing smooth interaction terms to be readily incorporated into any Generalized Linear Mixed Model. To achieve the computationally convenient separation of smoothing penalties, the construction differs from previous tensor product approaches in the penalties used to control smoothness, but the penalties have the advantage over several alternative approaches of being explicitly interpretable in terms of function shape. Like all tensor product smoothing methods, our approach builds up smooth functions of several variables from marginal smooths of lower dimension, but unlike much of the previous literature we treat the general case in which the marginal smooths can be any quadratically penalized basis expansion, and there can be any number of them. We also point out that the imposition of identifiability constraints on smoothers requires more care in the mixed model setting than it would in a simple additive model setting, and show how to deal with the issue. An interesting side effect of our construction is that an ANOVA-decomposition of the smooth can be read off from the estimates, although this is not our primary focus. We were motivated to undertake this work by applied problems in the analysis of abundance survey data, and two examples of this are presented.  相似文献   

18.
The main purpose of this study is to analyze the global and local statistical properties of nonparametric smoothers subject to a priori fixed length restriction. In order to do so, we introduce a set of local statistical measures based on their weighting system shapes and weight values. In this way, the local statistical measures of bias, variance and mean square error are intrinsic to the smoothers and independent of the data to which they will be applied on. One major advantage of the statistical measures relative to the classical spectral ones is their easiness of calculation. However, in this paper we use both in a complementary manner. The smoothers studied are based on two broad classes of weighting generating functions, local polynomials and probability distributions. We consider within the first class, the locally weighted regression smoother (loess) of degree 1 and 2 (L1 and L2), the cubic smoothing spline (CSS), and the Henderson smoothing linear filter (H); and in the second class, the Gaussian kernel (GK). The weighting systems of these estimators depend on a smoothing parameter that traditionally, is estimated by means of data dependent optimization criteria. However, by imposing to all of them the condition of an equal number of weights, it will be shown that some of their optimal statistical properties are no longer valid. Without any loss of generality, the analysis is carried out for 13- and 9-term lengths because these are the most often selected for the Henderson filters in the context of monthly time series decomposition. We would like to thank an Associate Editor and an anonymous referee for their valuable comments on an earlier version of this paper. Financing from MURST is also gratefully acknowledged.  相似文献   

19.
Some asymptotic results on generalized penalized spline smoothing   总被引:2,自引:0,他引:2  
Summary.  The paper discusses asymptotic properties of penalized spline smoothing if the spline basis increases with the sample size. The proof is provided in a generalized smoothing model allowing for non-normal responses. The results are extended in two ways. First, assuming the spline coefficients to be a priori normally distributed links the smoothing framework to generalized linear mixed models. We consider the asymptotic rates such that the Laplace approximation is justified and the resulting fits in the mixed model correspond to penalized spline estimates. Secondly, we make use of a fully Bayesian viewpoint by imposing an a priori distribution on all parameters and coefficients. We argue that with the postulated rates at which the spline basis dimension increases with the sample size the posterior distribution of the spline coefficients is approximately normal. The validity of this result is investigated in finite samples by comparing Markov chain Monte Carlo results with their asymptotic approximation in a simulation study.  相似文献   

20.
Smoothing splines are known to exhibit a type of boundary bias that can reduce their estimation efficiency. In this paper, a boundary corrected cubic smoothing spline is developed in a way that produces a uniformly fourth order estimator. The resulting estimator can be calculated efficiently using an O(n) algorithm that is designed for the computation of fitted values and associated smoothing parameter selection criteria. A simulation study shows that use of the boundary corrected estimator can improve estimation efficiency in finite samples. Applications to the construction of asymptotically valid pointwise confidence intervals are also investigated .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号