首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Data from longitudinal studies in which an initiating event and a subsequent event occur in sequence are called 'doubly censored' data if the time of both events is interval-censored. This paper is concerned with using doubly censored data to estimate the distribution function of the so-called 'duration time', i.e. the elapsed time between the originating event and the subsequent event. The paper proposes a generalization of the Gomez and Lagakos two-step method for the case where both the time to the initiating event and the duration time are continuous. This approach is applied to estimate the AIDS-latency time from a haemophiliacs cohort.  相似文献   

2.
ABSTRACT

In incident cohort studies, survival data often include subjects who have had an initiate event at recruitment and may potentially experience two successive events (first and second) during the follow-up period. When disease registries or surveillance systems collect data based on incidence occurring within a specific calendar time interval, the initial event is usually subject to double truncation. Furthermore, since the second duration process is observable only if the first event has occurred, double truncation and dependent censoring arise. In this article, under the two sampling biases with an unspecified distribution of truncation variables, we propose a nonparametric estimator of the joint survival function of two successive duration times using the inverse-probability-weighted (IPW) approach. The consistency of the proposed estimator is established. Based on the estimated marginal survival functions, we also propose a two-stage estimation procedure for estimating the parameters of copula model. The bootstrap method is used to construct confidence interval. Numerical studies demonstrate that the proposed estimation approaches perform well with moderate sample sizes.  相似文献   

3.
In longitudinal studies, the proportional hazard model is often used to analyse covariate effects on the duration time, defined as the elapsed time between the first and second event. In this article, we consider the situation when the first event suffers partly interval-censoring and the second event suffers left-truncation and right-censoring. We proposed a two-step estimation procedure for estimating the regression coefficients of the proportional model. A simulation study is conducted to investigate the performance of the proposed estimator.  相似文献   

4.
The last decade saw enormous progress in the development of causal inference tools to account for noncompliance in randomized clinical trials. With survival outcomes, structural accelerated failure time (SAFT) models enable causal estimation of effects of observed treatments without making direct assumptions on the compliance selection mechanism. The traditional proportional hazards model has however rarely been used for causal inference. The estimator proposed by Loeys and Goetghebeur (2003, Biometrics vol. 59 pp. 100–105) is limited to the setting of all or nothing exposure. In this paper, we propose an estimation procedure for more general causal proportional hazards models linking the distribution of potential treatment-free survival times to the distribution of observed survival times via observed (time-constant) exposures. Specifically, we first build models for observed exposure-specific survival times. Next, using the proposed causal proportional hazards model, the exposure-specific survival distributions are backtransformed to their treatment-free counterparts, to obtain – after proper mixing – the unconditional treatment-free survival distribution. Estimation of the parameter(s) in the causal model is then based on minimizing a test statistic for equality in backtransformed survival distributions between randomized arms.  相似文献   

5.
In this paper we propose a quantile survival model to analyze censored data. This approach provides a very effective way to construct a proper model for the survival time conditional on some covariates. Once a quantile survival model for the censored data is established, the survival density, survival or hazard functions of the survival time can be obtained easily. For illustration purposes, we focus on a model that is based on the generalized lambda distribution (GLD). The GLD and many other quantile function models are defined only through their quantile functions, no closed‐form expressions are available for other equivalent functions. We also develop a Bayesian Markov Chain Monte Carlo (MCMC) method for parameter estimation. Extensive simulation studies have been conducted. Both simulation study and application results show that the proposed quantile survival models can be very useful in practice.  相似文献   

6.
Some work has been done in the past on the estimation for the three-parameter gamma distribution based on complete and censored samples. In this paper, we develop estimation methods based on progressively Type-II censored samples from a three-parameter gamma distribution. In particular, we develop some iterative methods for the determination of the maximum likelihood estimates (MLEs) of all three parameters. It is shown that the proposed iterative scheme converges to the MLEs. In this context, we propose another method of estimation which is based on missing information principle and moment estimators. Simple alternatives to the above two methods are also suggested. The proposed estimation methods are then illustrated with a numerical example. We also consider the interval estimation based on large-sample theory and examine the actual coverage probabilities of these confidence intervals in case of small samples using a Monte Carlo simulation study.  相似文献   

7.
The inverse Gaussian (IG) distribution, also known as the Wald distribution, is a long-tailed positively skewed distribution and a well-known lifetime distribution. In this paper, we propose an efficient method of estimation for the parameters and quantiles of the three-parameter IG distribution, which is based on statistics invariant to unknown location. Through a Monte Carlo simulation study, we then show that the proposed method performs well compared with other prominent methods in terms of bias and variance. Finally, we present two illustrative examples.  相似文献   

8.
In this paper, we introduce a bivariate Kumaraswamy (BVK) distribution whose marginals are Kumaraswamy distributions. The cumulative distribution function of this bivariate model has absolutely continuous and singular parts. Representations for the cumulative and density functions are presented and properties such as marginal and conditional distributions, product moments and conditional moments are obtained. We show that the BVK model can be obtained from the Marshall and Olkin survival copula and obtain a tail dependence measure. The estimation of the parameters by maximum likelihood is discussed and the Fisher information matrix is determined. We propose an EM algorithm to estimate the parameters. Some simulations are presented to verify the performance of the direct maximum-likelihood estimation and the proposed EM algorithm. We also present a method to generate bivariate distributions from our proposed BVK distribution. Furthermore, we introduce a BVK distribution which has only an absolutely continuous part and discuss some of its properties. Finally, a real data set is analysed for illustrative purposes.  相似文献   

9.
In clinical trials, it may be of interest taking into account physical and emotional well-being in addition to survival when comparing treatments. Quality-adjusted survival time has the advantage of incorporating information about both survival time and quality-of-life. In this paper, we discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models for the sojourn times in health states. Semiparametric and parametric (with exponential distribution) approaches are considered. A simulation study is presented to evaluate the performance of the proposed estimator and the jackknife resampling method is used to compute bias and variance of the estimator.  相似文献   

10.
We have previously(Segal and Neuhaus, 1993) devised methods for obtaining marginal regression coefficients and associated variance estimates for multivariate survival data, using a synthesis of the Poisson regression formulation for univariate censored survival analysis and generalized estimating equations (GEE's). The method is parametric in that a baseline survival distribution is specified. Analogous semiparametric models, with unspecified baseline survival, have also been developed (Wei, Lin and Weissfeld, 1989; Lin, 1994).Common to both these approaches is the provision of robust variances for the regression parameters. However, none of this work has addressed the more difficult area of dependence estimation. While GEE approaches ostensibly provide such estimates, we show that there are problems adopting these with multivariate survival data. Further, we demonstrate that these problems can affect estimation of the regression coefficients themselves. An alternate, ad hoc approach to dependence estimation, based on design effects, is proposed and evaluated via simulation and illustrative examples. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
In biostatistical applications interest often focuses on the estimation of the distribution of time T between two consecutive events. If the initial event time is observed and the subsequent event time is only known to be larger or smaller than an observed point in time, then the data is described by the well understood singly censored current status model, also known as interval censored data, case I. Jewell et al. (1994) extended this current status model by allowing the initial time to be unobserved, but with its distribution over an observed interval ' A, B ' known to be uniformly distributed; the data is referred to as doubly censored current status data. These authors used this model to handle application in AIDS partner studies focusing on the NPMLE of the distribution G of T . The model is a submodel of the current status model, but the distribution G is essentially the derivative of the distribution of interest F in the current status model. In this paper we establish that the NPMLE of G is uniformly consistent and that the resulting estimators for the n 1/2-estimable parameters are efficient. We propose an iterative weighted pool-adjacent-violator-algorithm to compute the estimator. It is also shown that, without smoothness assumptions, the NPMLE of F converges at rate n −2/5 in L 2-norm while the NPMLE of F in the non-parametric current status data model converges at rate n −1/3 in L 2-norm, which shows that there is a substantial gain in using the submodel information.  相似文献   

12.
In this paper, we propose a new method of estimation for the parameters and quantiles of the three-parameter Weibull distribution based on Type-II right censored data. The method, based on a data transformation, overcomes the problem of unbounded likelihood. In the proposed method, under mild conditions, the estimates always exist uniquely, and the estimators are also consistent over the entire parameter space. Through Monte Carlo simulations, we further show that the proposed method of estimation performs well compared to some prominent methods in terms of bias and root mean squared error in small-sample situations. Finally, two real data sets are used to illustrate the proposed method of estimation.  相似文献   

13.
The three-parameter Weibull distribution is widely used in life testing and reliability analysis. In this article, we propose an efficient method for the estimation of parameters and quantiles of the three-parameter Weibull distribution, which avoids the problem of unbounded likelihood, by using statistics invariant to unknown location. Through a Monte Carlo simulation study, we show that the proposed method performs well compared to other prominent methods based on bias and MSE. Finally, we present two illustrative examples.  相似文献   

14.
There are relatively few discussions about measurement error in the accelerated failure time (AFT) model, particularly for the semiparametric AFT model. In this article, we propose an adjusted estimation procedure for the semiparametric AFT model with covariates subject to measurement error, based on the profile likelihood approach and simulation and exploration (SIMEX) method. The simulation studies show that the proposed semiparametric SIMEX approach performs well. The proposed approach is applied to a coronary heart disease dataset from the Busselton Health study for illustration.  相似文献   

15.
Accurate estimation of the parameters of superimposed sinusoidal signals is an important problem in digital signal processing and time series analysis. In this article, we propose a simultaneous estimation procedure for estimation of the number of signals and signal parameters. The proposed sequential method is based on a robust bivariate M-periodogram and uses the orthogonal structure of the superimposed sinusoidal model for sequential estimation. Extensive simulations and data analysis show that the proposed method has a high degree of frequency resolution capability and can provide robust and efficient estimates of the number of signals and signal parameters.  相似文献   

16.
Left-truncated and right-censored (LTRC) data are encountered frequently due to a prevalent cohort sampling in follow-up studies. Because of the skewness of the distribution of survival time, quantile regression is a useful alternative to the Cox's proportional hazards model and the accelerated failure time model for survival analysis. In this paper, we apply the quantile regression model to LTRC data and develops an unbiased estimating equation for regression coefficients. The proposed estimation methods use the inverse probabilities of truncation and censoring weighting technique. The resulting estimator is uniformly consistent and asymptotically normal. The finite-sample performance of the proposed estimation methods is also evaluated using extensive simulation studies. Finally, analysis of real data is presented to illustrate our proposed estimation methods.  相似文献   

17.
In biomedical studies, correlated failure time data arise often. Although point and confidence interval estimation for quantiles with independent censored failure time data have been extensively studied, estimation for quantiles with correlated failure time data has not been developed. In this article, we propose a nonparametric estimation method for quantiles with correlated failure time data. We derive the asymptotic properties of the quantile estimator and propose confidence interval estimators based on the bootstrap and kernel smoothing methods. Simulation studies are carried out to investigate the finite sample properties of the proposed estimators. Finally, we illustrate the proposed method with a data set from a study of patients with otitis media.  相似文献   

18.
In biostatistical applications interest often focuses on the estimation of the distribution of time between two consecutive events. If the initial event time is observed and the subsequent event time is only known to be larger or smaller than an observed point in time, then the data is described by the well-understood singly censored current status model, also known as interval censored data, case I. Jewell et al. (1994) extended this current status model by allowing the initial time to be unobserved, with its distribution over an observed interval [A, B] known; the data is referred to as doubly censored current status data. This model has applications in AIDS partner studies. If the initial time is known to be uniformly distribute d, the model reduces to a submodel of the current status model with the same asymptotic information bounds as in the current status model, but the distribution of interest is essentially the derivative of the distribution of interest in the current status model. As a consequence the non-parametric maximum likelihood estimator is inconsistent. Moreover, this submodel contains only smooth heavy tailed distributions for which no moments exist. In this paper, we discuss the connection between the singly censored current status model and the doubly censored current status model (for the uniform initial time) in detail and explain the difficulties in estimation which arise in the doubly censored case. We propose a regularized MLE corresponding with the current status model. We prove rate results, efficiency of smooth functionals of the regularized MLE, and present a generally applicable efficient method for estimation of regression parameters, which does not rely on the existence of moments. We also discuss extending these ideas to a non-uniform distribution for the initial time.  相似文献   

19.
In the analysis of time-to-event data, restricted mean survival time has been well investigated in the literature and provided by many commercial software packages, while calculating mean survival time remains as a challenge due to censoring or insufficient follow-up time. Several researchers have proposed a hybrid estimator of mean survival based on the Kaplan–Meier curve with an extrapolated tail. However, this approach often leads to biased estimate due to poor estimate of the parameters in the extrapolated “tail” and the large variability associated with the tail of the Kaplan–Meier curve due to small set of patients at risk. Two key challenges in this approach are (1) where the extrapolation should start and (2) how to estimate the parameters for the extrapolated tail. The authors propose a novel approach to calculate mean survival time to address these two challenges. In the proposed approach, an algorithm is used to search if there are any time points where the hazard rates change significantly. The survival function is estimated by the Kaplan–Meier method prior to the last change point and approximated by an exponential function beyond the last change point. The parameter in the exponential function is estimated locally. Mean survival time is derived based on this survival function. The simulation and case studies demonstrated the superiority of the proposed approach.  相似文献   

20.
In this article, we consider a first-order integer-valued autoregressive (INAR(1)) model. Then, we propose change point estimators for the rate and dependence parameters in INAR(1) model using maximum likelihood estimation method when the type of change belongs to a family of monotonic changes. To monitor the process, a combined EWMA and c control chart is considered. The results show that the proposed change point estimators provide efficient estimates of the change time. At the end, to illustrate the application of the proposed estimators, a real case related to IP counts data is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号