首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Log-normal linear models are widely used in applications, and many times it is of interest to predict the response variable or to estimate the mean of the response variable at the original scale for a new set of covariate values. In this paper we consider the problem of efficient estimation of the conditional mean of the response variable at the original scale for log-normal linear models. Several existing estimators are reviewed first, including the maximum likelihood (ML) estimator, the restricted ML (REML) estimator, the uniformly minimum variance unbiased (UMVU) estimator, and a bias-corrected REML estimator. We then propose two estimators that minimize the asymptotic mean squared error and the asymptotic bias, respectively. A parametric bootstrap procedure is also described to obtain confidence intervals for the proposed estimators. Both the new estimators and the bootstrap procedure are very easy to implement. Comparisons of the estimators using simulation studies suggest that our estimators perform better than the existing ones, and the bootstrap procedure yields confidence intervals with good coverage properties. A real application of estimating the mean sediment discharge is used to illustrate the methodology.  相似文献   

2.
The exponentiated Gumbel model has been shown to be useful in climate modeling including global warming problem, flood frequency analysis, offshore modeling, rainfall modeling, and wind speed modeling. Here, we consider estimation of the probability density function (PDF) and the cumulative distribution function (CDF) of the exponentiated Gumbel distribution. The following estimators are considered: uniformly minimum variance unbiased (UMVU) estimator, maximum likelihood (ML) estimator, percentile (PC) estimator, least-square (LS) estimator, and weighted least-square (WLS) estimator. Analytical expressions are derived for the bias and the mean squared error. Simulation studies and real data applications show that the ML estimator performs better than others.  相似文献   

3.
The Weibull extension model is a useful extension of the Weibull distribution, allowing for bathtub shaped hazard rates among other things. Here, we consider estimation of the PDF and the CDF of the Weibull extension model. The following estimators are considered: uniformly minimum variance unbiased (UMVU) estimator, maximum likelihood (ML) estimator, percentile (PC) estimator, least squares (LS) estimator, and weighted least squares (WLS) estimator. Analytical expressions are derived for the bias and the mean squared error. Simulation studies and real data applications show that the ML estimator performs better than others.  相似文献   

4.
A method of bias adjustment which minimizes the asymptotic mean square error is presented for an estimator typically given by maximum likelihood. Generally, this adjustment includes unknown population values. However, in some examples, the adjustment can be done without population values. In the case of a logit, a reasonable fixed value for the adjustment is found, which gives the asymptotic mean square error smaller than those of the asymptotically unbiased estimator and the maximum likelihood estimator. The weighted-score method, which yields directly the estimator with the minimized asymptotic mean square error, is also given.  相似文献   

5.
We examine the finite sample properties of the maximum likelihood estimator for the binary logit model with random covariates. Previous studies have either relied on large-sample asymptotics or have assumed non-random covariates. Analytic expressions for the first-order bias and second-order mean squared error function for the maximum likelihood estimator in this model are derived, and we undertake numerical evaluations to illustrate these analytic results for the single covariate case. For various data distributions, the bias of the estimator is signed the same as the covariate’s coefficient, and both the absolute bias and the mean squared errors increase symmetrically with the absolute value of that parameter. The behaviour of a bias-adjusted maximum likelihood estimator, constructed by subtracting the (maximum likelihood) estimator of the first-order bias from the original estimator, is examined in a Monte Carlo experiment. This bias-correction is effective in all of the cases considered, and is recommended for use when this logit model is estimated by maximum likelihood using small samples.  相似文献   

6.
Two‐stage design is very useful in clinical trials for evaluating the validity of a specific treatment regimen. When the second stage is allowed to continue, the method used to estimate the response rate based on the results of both stages is critical for the subsequent design. The often‐used sample proportion has an evident upward bias. However, the maximum likelihood estimator or the moment estimator tends to underestimate the response rate. A mean‐square error weighted estimator is considered here; its performance is thoroughly investigated via Simon's optimal and minimax designs and Shuster's design. Compared with the sample proportion, the proposed method has a smaller bias, and compared with the maximum likelihood estimator, the proposed method has a smaller mean‐square error. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we consider the estimation of the probability density function and the cumulative distribution function of the inverse Rayleigh distribution. In this regard, the following estimators are considered: uniformly minimum variance unbiased estimator, maximum likelihood (ML) estimator, percentile estimator, least squares estimator and weighted least squares estimator. To do so, analytical expressions are derived for the mean integrated squared error. As the result of simulation studies and real data applications indicate, when the sample size is not very small the ML estimator performs better than the others.  相似文献   

8.
Approximate normality and unbiasedness of the maximum likelihood estimate (MLE) of the long-memory parameter H of a fractional Brownian motion hold reasonably well for sample sizes as small as 20 if the mean and scale parameter are known. We show in a Monte Carlo study that if the latter two parameters are unknown the bias and variance of the MLE of H both increase substantially. We also show that the bias can be reduced by using a parametric bootstrap procedure. In very large samples, maximum likelihood estimation becomes problematic because of the large dimension of the covariance matrix that must be inverted. To overcome this difficulty, we propose a maximum likelihood method based upon first differences of the data. These first differences form a short-memory process. We split the data into a number of contiguous blocks consisting of a relatively small number of observations. Computation of the likelihood function in a block then presents no computational problem. We form a pseudo-likelihood function consisting of the product of the likelihood functions in each of the blocks and provide a formula for the standard error of the resulting estimator of H. This formula is shown in a Monte Carlo study to provide a good approximation to the true standard error. The computation time required to obtain the estimate and its standard error from large data sets is an order of magnitude less than that required to obtain the widely used Whittle estimator. Application of the methodology is illustrated on two data sets.  相似文献   

9.
This paper is concerned with classical statistical estimation of the reliability function for the exponential density with unknown mean failure time θ, and with a known and fixed mission time τ. The minimum variance unbiased (MVU) estimator and the maximum likelihood (ML) estimator are reviewed and their mean square errors compared for different sample sizes. These comparisons serve also to extend previous work, and reinforce further the nonexistence of a uniformly best estimator. A class of shrunken estimators is then defined, and it produces a shrunken quasi-estimator and a shrunken estimator. The mean square errors for both these estimators are compared to the mean square errors of the MVU and ML estimators, and the new estimators are found to perform very well. Unfortunately, these estimators are difficult to compute for practical applications. A second class of estimators, which is easy to compute is also developed. Its mean square error properties are compared to the other estimators, and it outperforms all the contending estimators over the high and low reliability parameter space. Since, for all the estimators, analytical mean square error comparisons are not tractable, extensive numerical analyses are done in obtaining both the exact small sample and large sample results.  相似文献   

10.
Summary. The task of estimating an integral by Monte Carlo methods is formulated as a statistical model using simulated observations as data. The difficulty in this exercise is that we ordinarily have at our disposal all of the information required to compute integrals exactly by calculus or numerical integration, but we choose to ignore some of the information for simplicity or computational feasibility. Our proposal is to use a semiparametric statistical model that makes explicit what information is ignored and what information is retained. The parameter space in this model is a set of measures on the sample space, which is ordinarily an infinite dimensional object. None-the-less, from simulated data the base-line measure can be estimated by maximum likelihood, and the required integrals computed by a simple formula previously derived by Vardi and by Lindsay in a closely related model for biased sampling. The same formula was also suggested by Geyer and by Meng and Wong using entirely different arguments. By contrast with Geyer's retrospective likelihood, a correct estimate of simulation error is available directly from the Fisher information. The principal advantage of the semiparametric model is that variance reduction techniques are associated with submodels in which the maximum likelihood estimator in the submodel may have substantially smaller variance than the traditional estimator. The method is applicable to Markov chain and more general Monte Carlo sampling schemes with multiple samplers.  相似文献   

11.
Estimation of each of and linear functions of two order restricted normal means is considered when variances are unknown and possibly unequal. We replace unknown variances with sample variances and construct isotonic regression estimators, which we call in our paper the plug-in estimators, to estimate ordered normal means. Under squared error loss, a necessary and sufficient condition is given for the plug-in estimators to improve upon the unrestricted maximum likelihood estimators uniformly. As for the estimation of linear functions of ordered normal means, we also show that when variances are known, the restricted maximum likelihood estimator always improves upon the unrestricted maximum likelihood estimator uniformly, but when variances are unknown, the plug-in estimator does not always improve upon the unrestricted maximum likelihood estimator uniformly.  相似文献   

12.
For spatially correlated repeated arrays, a simple method is proposed for maximum likelihood (ML) estimation of the mean parameters. Efficiency of the sample mean over the maximum likelihood estimator (MLE) is analyzed. Spatial correlations combined with heterogeneity of spatial correlations or heterogeneity of error variances are shown to have adverse effect on efficiency of the sample mean. Therefore, in such spatially correlated and heterogeneous situations, it is recommended that spatial correlations should be properly addressed in estimating mean parameters.  相似文献   

13.
Given maximum likelihood equations for location and scale parameters, one determines conditions under which there exists a uniquely defined parametric statistical model, whose location and scale maximum likelihood estimators are the given ones. The constructive approach is exemplified at several kinds of mean estimators including the mean, mean square, mean mean and stretched power mean. The possible extension of the method to more general situations is discussed and illustrated at the sample median maximum likelihood estimator.  相似文献   

14.
A simple estimator is proposed for the dependence parameter for the Klotz model of Bernoulli trials with Markov dependence and it is compared with the ratio estimator given by Price and the approximate maximum likelihood estimator given by Klotz. The proposed estimator is shown to have considerably smaller bias than the other two estimators with comparable mean squared errors, and has all the large sample optimal properties that the other two estimators have.  相似文献   

15.
The uniformly minimum variance unbiased estimator (UMVUE) of the variance of the inverse Gaussian distribution is shown to be inadmissible in terms of the mean squared error, and a dominating estimator is given. A dominating estimator to the maximum likelihood estimator (MLE) of the variance and estimators dominating the MLE's and the UMVUE's of other parameters are also given.  相似文献   

16.
Asymptotic methods are commonly used in statistical inference for unknown parameters in binary data models. These methods are based on large sample theory, a condition which may be in conflict with small sample size and hence leads to poor results in the optimal designs theory. In this paper, we apply the second order expansions of the maximum likelihood estimator and derive a matrix formula for the mean square error (MSE) to obtain more precise optimal designs based on the MSE. Numerical results indicate the new optimal designs are more efficient than the optimal designs based on the information matrix.  相似文献   

17.
In this paper, the finite sample properties of the maximum likelihood and Bayesian estimators of the half-normal stochastic frontier production function are analyzed and compared through a Monte Carlo study. The results show that the Bayesian estimator should be used in preference to the maximum likelihood owing to the fact that the mean square error performance is substantially better in the Bayesian framework.  相似文献   

18.
Suppose that the function f is of recursive type and the random variable X is normally distributed with mean μ and variance α2. We set C = f(x). Neyman & Scott (1960) and Hoyle (1968) gave the UMVU estimators for the mean E(C) and for the variance Var(C) from independent and identically distributed random variables X1,…, Xn(n ≧ 2) having a normal distribution with mean μ and variance σ2, respectively. Shimizu & Iwase (1981) gave the variance of the UMVU estimator for E(C). In this paper, the variance of the UMVU estimator for Var(C) is given.  相似文献   

19.
An estimator for location, given a sample of only four or five observations, is proposed. The underlying distribution on of the sample may (with probability p) be contaminated by an outlier from a rightly-skewed distribution. The estimator minimizes the maximum mean squared error over all values of p. In fact, there exists an estimator which is unbiased in both the outlier - free and extreme-outlier cases, but its mean square error is substantially higher than the mean squared error for the minimax estimator. Mean squared errors for various underlying distributional situations are calculated and compared with those of other location estimators such as the mean and the median.  相似文献   

20.
In this paper we propose a Bezier curve method to estimate the survival function and the median survival time in interval-censored data. We compare the proposed estimator with other existing methods such as the parametric method, the single point imputation method, and the nonparametric maximum likelihood estimator through extensive numerical studies, and it is shown that the proposed estimator performs better than others in the sense of mean squared error and mean integrated squared error. An illustrative example based on a real data set is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号