首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As cities expand, conservation of beneficial insects is essential to maintaining robust urban ecosystem services such as pollination. Urban warming alters insect physiology, fitness, and abundance, but the effect of urban warming on pollinator communities has not been investigated. We sampled bees at 18 sites encompassing an urban warming mosaic within Raleigh, NC, USA. We quantified habitat variables at all sites by measuring air temperature, percent impervious surface (on local and landscape scales), floral density, and floral diversity. We tested the hypothesis that urban bee community structure depends on temperature. We also conducted model selection to determine whether temperature was among the most important predictors of urban bee community structure. Finally, we asked whether bee responses to temperature or impervious surface depended on bee functional traits. Bee abundance declined by about 41% per °C urban warming, and temperature was among the best predictors of bee abundance and community composition. Local impervious surface and floral density were also important predictors of bee abundance, although only large bees appeared to benefit from high floral density. Bee species richness increased with floral density regardless of bee size, and bee responses to urban habitat variables were independent of other life-history traits. Although we document benefits of high floral density, simply adding flowers to otherwise hot, impervious sites is unlikely to restore the entire urban pollinator community since floral resources benefit large bees more than small bees.  相似文献   

2.
Although urbanization is increasing worldwide, relatively few studies have investigated patterns of urban biodiversity outside of city parks and reserves, in urban neighborhoods where people live and work. We evaluated models including local and landscape factors that might influence the bee and butterfly richness of community gardens located within densely populated neighborhoods of the Bronx and East Harlem in New York City (>10,000 people/km2). The gardens were surrounded by buildings and limited amounts of green space (3,600–17,400 building units and 10–32% green space within a 500 m radius). Contrary to our initial prediction that landscape green space might be especially influential in this heavily urbanized setting, the most highly supported models for both bee and butterfly richness (based on Akaike Information Criterion) included just the local, within-garden variables of garden floral area and sunlight availability. There was marginal support for models of bee richness including the number of building units surrounding gardens within a 500 m radius (which exhibited a negative association with bee richness). In addition, perhaps because bees are central place foragers that may nest within or near gardens, supported models of bee species richness also included total garden area, canopy cover, and the presence of wild/unmanaged area in the garden. Generally, our findings indicate that sunlight and floral abundance are the major factors limiting local pollinator diversity in this setting. This suggests that rooftop and other “open” urban habitats might be managed to increase local pollinator diversity, even if seemingly “isolated” within heavily developed neighborhoods.  相似文献   

3.
Green roofs are potentially valuable habitats for plants and animals in urban areas. Wild bees are important pollinators for crops and wild plants and may be enhanced by anthropogenic structures, but little is known about wild bees on green roofs in cities. This study investigates the effects of green roof qualities (floral resources, substrate character and depth, roof height and age) on wild bee diversity, abundance and traits (nesting type, sociality, pollen specialisation, body size) on green roofs in Vienna. Nine green roofs were sampled monthly between March and September 2014 by a semi quantitative approach. Wild bees were collected in pre-defined sub-areas for the same amount of time and floral resources were recorded. Over all green roofs, 992 individuals belonging to 90 wild bee species were observed. Wild bee diversity and abundance was strongly positively affected by increasing forage availability and fine substrates. Wild bees on roofs were characteristically solitary, polylectic and 8.3–11.2 mm. Regarding nesting type, the percentage of above-ground nesting bees was higher compared to the common species composition in Middle Europe. Ground-nesting wild bees were mainly eusocial, smaller (6.4–9.6 mm) and positively affected by roofs with fine substrates. During June, when forage availability by wildflowers on roofs was “low” (5–15% flower coverage), flowering Sedum species were an important forage resource. We conclude that wild bee diversity and abundance on green roofs are enhanced by floral resources. Furthermore, the installations of areas with finer and deeper substrates benefit ground nesting and eusocial wild bees.  相似文献   

4.
With their abundant floral resources, urban community gardens have the potential to play an important role in pollinator conservation. At the same time, the gardens themselves are dependent upon the pollination services provided by insects. Thus, understanding the variables that can increase bee richness or abundance in community gardens can contribute to both urban agriculture and pollinator conservation. Here we examine the impact of several environmental variables on bee abundance and diversity in urban community gardens in Sydney, Australia. We used hand netting and trap nests to sample bees in 27 community gardens ranging from inner city gardens with limited surrounding green space, to suburban gardens located next to national parks. We did not find strong support for an impact of any of our variables on bee species richness, abundance or diversity. We found high abundance of a recently introduced non-native bee: the African carder bee, Afranthidium repetitum (Schulz 1906). The abundance of African carder bees was negatively correlated with the amount of surrounding green space and positively correlated with native bee abundance/species richness. Our results highlight the seemingly rapid increase in African carder bee populations in inner city Sydney, and we call for more research into this bee’s potential environmental impacts. Our results also suggest that hard-to-change environmental factors such as garden size and distance to remnant forests may not have a strong influence on native bee diversity and abundance in highly urbanized area.  相似文献   

5.
Bees are important flower-visiting insects that display differential occurrences at food resources throughout urban and wildland landscapes. This study examined the visitation rates and foraging patterns of eight taxonomic groups of bees that are common to California poppies, Eschscholzia californica, in both landscape types. Bee occurrence was documented in relation to floral resource characteristics (patch area, poppy coverage, and poppy density), local landscape characteristics (distance to the wildland-urban interface, distance to riparian areas, distance to green space, and land use), and regional landscape context (urban versus wildland). Similar abundance and richness measures were recorded at both urban and wildland poppy patches, but community composition varied in each landscape. Bumble bees were more abundant at poppies in the wildland whereas species in the family Halictidae (sweat bees) were more abundant at poppies within the urban landscape. Resource patch size and density consistently correlated with increased bee presence for all bee types foraging in the wildland. Individual patterns of occurrence in the urban landscape were somewhat divergent; the foraging dynamics of larger bodied-bees (Bombus vosnesenskii and Megachile species) correlated significantly with resource patch size and density, whereas smaller-bodied bees (family Halictidae and Andrena species) were influenced by landscape characteristics such as distance to the wildland-urban interface and distance to riparian areas. In summary, the surrounding landscape had an influence on community composition, but the magnitude of the floral resource present at a site and factors relating to foraging energetics were dominant drivers of local occurrence. These results suggest that management strategies that provide dense and abundant floral resources should be successful in attracting bees, irrespective of their location within the urban matrix.  相似文献   

6.
Tasker  Perrin  Reid  Chris  Young  Andrew D.  Threlfall  Caragh G.  Latty  Tanya 《Urban Ecosystems》2020,23(2):345-354

Urban community gardens are potentially important sites for urban pollinator conservation because of their high density, diversity of flowering plants, and low pesticide use (relative to agricultural spaces). Selective planting of attractive crop plants is a simple and cost-effective strategy for attracting flower visitors to urban green spaces, however, there is limited empirical data about which plants are most attractive. Here, we identified key plant species that were important for supporting flower visitors using a network-based approach that combined metrics of flower visitor abundance and diversity on different crop species. We included a metric of ‘popularity’ which assessed how frequently a particular plant appeared within community gardens. We also determined the impact of garden characteristics such as size, flower species richness, and flower species density on the abundance and diversity of flower visitors. Two plant species, Brassica rapa and Ocimum basilicum were identified as being particularly important species for supporting flower visitor populations. Flower species richness had a strong positive effect on both the abundance and diversity of flower visitors. We suggest that gardeners can maximise the conservation value of their gardens by planting a wide variety of flowering plants including attractive plants such as B. rapa and O. basilicum.

  相似文献   

7.
Urbanization affects the availability and diversity of floral resources (pollen and/or nectar) for wild pollinating insects. For example, urban green areas are characterized by an abundance of ornamental plant species. Increasingly, trees are planted to improve the aesthetics of urban streets and parks. These urban trees might offer important floral resources to pollinating insects. To examine the suitability of urban trees as resources for pollinating insects, we investigated the chemical composition of pollen and nectar as well as the amount of nectar produced by the nine major insect-pollinated tree species planted in cities of Western Europe, namely Acer pseudoplatanus, Aesculus carnea, A. hippocastanum, Robinia pseudoacacia, Tilia cordata, T. x euchlora, T. x europaea, T. platyphyllos and T. tomentosa. The analyses revealed that globally the Tilia trees provide pollen with lower contents of polypeptides, amino acids and phytosterols compared with the other species. Urban tree flowers offer abundant nectar with relatively high sugar contents (0.16–1.28 mg/flower); sucrose was the predominant sugar in all nectars. The investigated tree species could therefore be considered in future city plantings.  相似文献   

8.
Urban gardens may support bees by providing resources in otherwise resource-poor environments. However, it is unclear whether urban, backyard gardens with native plants will support more bees than gardens without native plants. We examined backyard gardens in northwestern Ohio to ask: 1) Does bee diversity, abundance, and community composition differ in backyard gardens with and without native plants? 2) What characteristics of backyard gardens and land cover in the surrounding landscape correlate with changes in the bee community? 3) Do bees in backyard gardens respond more strongly to local or landscape factors? We sampled bees with pan trapping, netting, and direct observation. We examined vegetation characteristics and land cover in 500 m, 1 km, and 2 km buffers surrounding each garden. Abundance of all bees, native bees, and cavity-nesting bees (but not ground-nesting bees) was greater in native plant gardens but only richness of cavity-nesting bees differed in gardens with and without native plants. Bee community composition differed in gardens with and without native plants. Overall, bee richness and abundance were positively correlated with local characteristics of backyard gardens, such as increased floral abundance, taller vegetation, more cover by woody plants, less cover by grass, and larger vegetable gardens. Differences in the amount of forest, open space, and wetlands surrounding gardens influenced abundance of cavity- and ground-nesting bees, but at different spatial scales. Thus, presence of native plants, and local and landscape characteristics might play important roles in maintaining bee diversity within urban areas.  相似文献   

9.
Increased urbanization typically leads to an increase in abundance of a few species and a reduction in bird species richness. Understanding the structure of biotic communities in urban areas will allow us to propose management techniques and to decrease conflicts between wild species and human beings. The objective of this study was to describe the structure of the bird community in an urban ecosystem. The study was carried out in the city of Taubaté in southeastern Brazil. Point-counts were established in areas with different levels of tree density ranging from urban green spaces to predominantly built-up areas. We looked for a correlation between the richness/abundance of birds and the size of the area surveyed, the number of houses, the number of tree species and the number of individual trees. The results of multiple regression showed that bird richness had a direct relationship with vegetation complexity. The abundance and diversity of tree species were better predictors of bird species than the number of houses and size of the area surveyed. We discuss implications of this study for conservation and management of bird diversity in urban areas, such as the need to increase green areas containing a large diversity of native plant species.  相似文献   

10.
Legacies of lead contamination present challenges in the management of urban greenspaces for beneficial insect conservation. In particular, the sublethal effects of lead contamination on bee foraging behavior could negatively impact plant-pollinator interactions and the sustainability of urban agriculture. It is difficult, however, to distinguish between differences in foraging behavior caused by lead contamination directly as compared to differences resulting from variation in floral traits, which can also be affected by contamination. We compared the foraging behavior of bees, specifically the number of visits and visit duration, at sunflowers grown in lead-contaminated and uncontaminated soils. We also measured soil lead contamination’s effects on sunflower morphological traits. While the number of visits a sunflower head received was not affected by soil lead contamination, bee visit duration was shorter at sunflowers grown in lead contaminated soil. This effect of lead contamination on visit duration was not mediated by sunflower floral traits, which were themselves affected by lead contamination. The inability of bees to distinguish between sunflowers grown in contaminated vs. uncontaminated soil prior to visitation suggests a possible bioaccumulation pathway for lead in bees.  相似文献   

11.
The role of urban expansion on bee diversity is poorly understood, but it may play an important role in restructuring pollinator diversity observed in rural regions at the urban perimeter. We studied bee communities in two habitats essential for pollinators (residential gardens and semi-natural areas) at 42 sites situated at the edge of greater Montreal, Canada. Bee species richness, abundance and functional diversity all increased with urbanization in both habitat types, but gardens and semi-natural areas supported distinct bee communities with unique responses to urbanization in terms of species turnover. Compared to semi-natural sites, residential gardens supported bees that foraged from a greater number but a lower proportion of available plant species. Bees did not discriminate between exotic and indigenous plant species in either gardens or semi-natural sites and were attracted to flowers in either habitat irrespective of their origins. Protecting semi-natural ruderal areas and providing residential garden habitats for pollinators are both effective means of promoting regional bee diversity in urbanizing regions.  相似文献   

12.

Urban landscapes are often florally rich due to extensive management of cultivated plants around the city. High abundance and diversity of these floral resources has been linked to more abundant and diverse pollinator communities, but little is known about how urban pollinators select from the wide variety of available flowers. This study provides unique insight into urban plant-pollinator interactions by examining how many plant taxa, and which taxa, are visited by pollinators. Over a three-year period, we observed foraging of urban pollinators across 63 neighborhoods in Chicago, Illinois (USA). We observed 1815 plant-pollinator interactions between 24 pollinator morpho-types and 106 plant taxa. An additional 57 plant taxa were flowering but not visited by pollinators. On average, each pollinator morpho-type visited 19 plant taxa, and most pollinators showed generalist tendencies. We identified 42 plant taxa that were visited by more pollinator morpho-types than their floral abundance would predict; we call these ‘highly attractive’ plants. In general, perennial and native plants received more pollinator visits than their counterparts, and ornamental plants were visited by more species than unintentional ‘weeds’. However, the two most-visited plant taxa were non-native, perennial weeds. Our results suggest that many flowering plants in cities are not visited by pollinators. Furthermore, the plant-pollinator network could be reduced to only four plant taxa without losing any pollinator morpho-types. To enhance urban pollinator conservation, urban residents can select ornamental plants from our list of ‘highly attractive’ plant taxa, or can allow some of the highly attractive ‘weeds’ to persist in their gardens.

  相似文献   

13.

Worldwide, cities are investing in greenspace to enhance urban quality of life and conserve biodiversity. Cities should ensure these investments do not unintentionally result in ecosystem disservices. Municipal management decisions regarding urban greenspaces, such as mowing frequency, could influence mosquito communities and public health. We examined how mowing, resultant vegetation characteristics, and landscape context influenced adult mosquito abundance in urban vacant lots. We sampled adult Culex and Aedes mosquitoes in a network of vacant lots within eight Cleveland, Ohio, USA neighborhoods in 2015 and 2016 using CO2-baited light traps and grass-infused gravid traps. For each lot, we quantified vegetation characteristics, including plant diversity, bloom area, and biomass, as well as the surrounding landscape composition at radii of 60 and 1000 m. We found that periodic mowing did not significantly affect mosquito abundances. However, vacant lots with more diverse plant communities were associated with a greater light trap capture of both Culex and Aedes. Both mosquito genera declined in light trap catches with increased impervious surface at 60 m. Similarly, Culex (gravid trap) declined with the amount of built infrastructure at 1000 m. In contrast, Aedes (light trap) increased with the concentration of buildings in the landscape at 1000 m. Our findings indicate that reducing the frequency of mowing within vacant lots will not necessarily increase adult mosquito abundance. Nonetheless, mosquito surveillance and management should be considered when planning conservation-focused greenspaces, as vegetation design choices and the landscape context of a site do influence vector abundance and potentially disease risk.

  相似文献   

14.
Urbanization is one of the most significant causes of habitat fragmentation on the planet, resulting in substantial losses of biodiversity and disruptions to ecological processes. We examined the effects of urbanization on the diversity and abundance of arboreal invertebrates in a dominant tree species (Angophora costata) in a highly urbanized landscape in Sydney, Australia, identifying the potential ecological consequences of shifts in diversity. We hypothesized that trophic structure would be influenced by landscape context with a greater richness and abundance of invertebrates in small remnants and edges. Canopy arthropods were sampled via beating from trees in 15 sites in three landscape contexts; five large patches of continuous vegetation, five edges of large patches and five small urban remnants. Trees in large patches supported fewer individuals compared to trees in small urban remnants and edge sites. The composition of assemblages and overall trophic structure also differed between edges and large patches, with a greater abundance of grazing insects in edges. No differences were detected between small urban remnants and edges, suggesting that observed differences might be attributed to an edge effect as opposed to an area effect per se. These changes in trophic structure, revealing a greater abundance of grazing herbivores and a reduced abundance of predators and parasitoids in edge sites, are consistent with work describing elevated levels of herbivory in edges of remnant vegetation. Future management of remnant urban vegetation and associated biodiversity requires not only an understanding of how trophic status influences the extent of responses by arboreal invertebrate communities, but also how these will affect ecosystem functioning.  相似文献   

15.
While it is expected that green roofs support a wider variety of insects compared with conventional roof surfaces, few studies have quantified insect diversity on green roofs. Even fewer have attempted to determine whether green roofs can support insect communities comparable to level-ground urban habitats. In this study, insect richness, abundance and diversity indices were compared between five pairs of intensive green roofs and adjacent ground-level habitat patches in downtown Halifax, Nova Scotia. Pitfall traps were set at each site, collected bi-weekly between May-October 2009 and captured insects were identified to morphospecies (except where taxonomic expertise was available). No significant differences in richness, abundance or any of the indices (S, H’, Evar) were detected in analysis, which included plant species richness, site area and sampling effort as covariables. However, richness and abundance tended to be greater at ground level for all orders (except Heteroptera), and diversity appeared to increase away from the downtown core. Insect composition differed slightly between green roof and ground-level sites; only 17 species were collected from a single site type in numbers greater than five specimens. Nevertheless, a wide variety of insects, including many uncommon species were collected from green roofs, supporting the idea that these habitats can contribute to sustaining biodiversity in cities.  相似文献   

16.
Urban ecosystems are growing rapidly and urbanization is an important cause of the loss of biodiversity. Bees are declining in abundance worldwide, including urban areas, and this decline is alarming because of their global importance as plant pollinators. Here we examine that decline by comparing a bee assemblage sampled in the 1980s and again in 2015, in an urban area of the city of Curitiba. Both studies sampled assemblages with hand-nets every two weeks during one year of study. Bee species richness has declined by 45% (112 species then, 63 today). Two species that have disappeared, Gaesischia fulgurans (Holmberg, 1903) and Thectochlora basiatra (Strand, 1910), have also disappeared elsewhere in the city. Also, relative abundances of species have changed, notably with the increase of social bees. Large bees that nest in cavities have also increased relative to small bees that nest in the ground. These findings are similar with previous reports indicating the sensibility of bees to urbanization. The increase in paved areas, in urban population and in exotic plants are all probably responsible for the sharp decline in bee diversity and abundance.  相似文献   

17.
Green roofs can contribute to enrichment and conservation of urban ecology. An experimental green roof was established in humid-tropical Hong Kong to monitor over two years its spontaneous colonization by plants and bird visits. Some 94 voluntary vascular plant species from 26 families and 76 genera were established, with propagules brought mainly by birds and wind and secondarily inherited from soil seed bank. Plant species composition changed dynamically during the study period. They fall into three groups, namely dominant ruderal (herbaceous and sub-shrub) as surrogate of early-stage local grassland ecosystem succession, arboreal (trees and shrubs), and hygrophilous herb. Progressive increase in vegetation cover was accompanied by changes in species diversity and evenness. In addition, 16 bird species from 8 families and 14 genera were recorded. Ten species were residents and the six migrant species were winter visitors. Their food preference was mainly omnivore and insectivore. Winter and the second year encountered higher species richness, diversity, and evenness. Most vegetation parameters correlated positively with avian community indexes, signifying provision of sustenance by green-roof ecosystem to birds. Vegetation coverage correlated negatively with avian abundance, due to shunning by the abundant ground-foraging Tree Sparrow. Both local common ruderal plant species and common urban bird species can successfully establish and reproduce on the extensive green roof, confirming potentials for urban ecology and biodiversity enhancement and conservation even in densely-developed urban areas. The successful nurturing of naturalistic green roof offers new opportunities for green roof design that deviates from the predominant cultivated-horticultural approach.  相似文献   

18.
Urban neighborhoods vary in development intensity and in the life style and demographics of their residents. Decisions made by urban residents affect plant communities, their functional characteristics, and the floral resources they provide. We recorded flowers in front-facing yards in 58 neighborhoods in Chicago, IL (USA) and examined patterns in community composition and species turnover between neighborhoods. We investigated how species richness and plant characteristics, including origin, cultivation intent, and life cycle, are affected by neighborhood socioeconomic factors. Urban plant species tended to be perennial, ornamental, and non-native. White clover had the broadest distribution and the highest floral abundance but was not present in several of the highest-income neighborhoods. Although we found 144 morpho-species across neighborhoods, most occurred infrequently. Species turnover was highest for ornamental species and lowest for weedy species, suggesting that intentional plantings are driving beta diversity across the landscape. We found the highest species richness in neighborhoods with intermediate numbers of Hispanic and white residents and with intermediate number of residential lots; neighborhoods with racially or ethnically homogenous populations had fewer plant species. The high frequency of weeds in low-income neighborhoods, the occurrence of certain ornamental plant species in whiter, wealthier communities, and high turnover of species from one neighborhood to another, all suggest a disparity in plant-related ecosystem services across cities. Complexity in urban plantings may be influenced by the suite of perspectives that residents bring towards habitat management. Cultivation sustains a diversity of plants and creates a disparity in plant traits by neighborhood socioeconomics.  相似文献   

19.
Protecting riparian corridors is a commonly applied environmental policy in urban landscapes. However, empirical data demonstrating their efficacy for biodiversity conservation outcomes is scarce. In this study we investigated whether riparian corridor width influences the diversity and community structure of ant (Hymenoptera: Formicidae) and vascular plant assemblages therein. Eighteen corridors of differing widths were selected from within the Ku-ring-gai Local Government Area, Sydney Australia. Ants were sampled using pitfall traps positioned within rectangular vegetation transects (30 × 10 m). Both ant and plant species richness, when standardised for sampling effort, were unrelated to riparian corridor width. However, significant compositional differences between sites were evident with increased width up to ~50 m. Narrow corridors contained greater abundances of opportunistic ant species and higher proportions of exotic plants. We interpret this to be the result of the greater disturbance/edge influence derived from adjacent upland urban environments. Site beta diversity did not increase with corridor width, suggesting that the exclusion of novel upslope habitats in narrow riparian corridors is not a significant cause of community assemblage modification at these sites. To minimise the impact of deleterious edge effects on ant fauna, environmental managers should seek to retain riparian corridors wider than ~50 m. However, we observed substantial between-site variability of biotic assemblages, irrespective of corridor width. Therefore we recommend that environmental management practice needs to take a catchment-wide approach and consider other parameters that may contribute to riparian health so as to optimise the protection of riparian biodiversity.  相似文献   

20.
Metropolitan areas are continually expanding, resulting in increasing impacts on ecosystems. Worldwide, riverine floodplains are among the most endangered landscapes and are often the focus of restoration activities. Amphibians and reptiles have valuable ecological roles in ecosystems, and promoting their abundance and diversity when rehabilitating riparian systems can contribute to reestablishing degraded ecosystem functions. We evaluated the herpetofauna community by measuring abundance, richness, diversity, and species-habitat relations along three reaches (wildland, urban rehabilitated, and urban disturbed reaches) varying in degree of urbanization and rehabilitation along the Salt River in central Arizona. We performed visual surveys for herpetofauna and quantified riparian microhabitat along eight transects per reach. The wildland reach had the greatest herpetofauna species richness and diversity, and had similar abundance compared to the urban rehabilitated reach. The urban disturbed reach had the lowest herpetofauna abundance and species richness, and had a similar diversity compared to the urban rehabilitated reach. Principal Component Analysis reduced 21 microhabitat variables to five factors which described habitat differences among reaches. Vegetation structural complexity, vegetation species richness, densities of Prosopis (mesquite), Salix (willow), Populus (cottonwood), and animal burrow density had a positive correlation with at least one herpetofauna community parameter, and had a positive correlation with abundance of at least one lizard species. Rehabilitation activities positively influenced herpetofauna abundance and species richness; whereas, urbanization negatively influenced herpetofauna diversity. Based on herpetofauna-microhabitat associations, we recommend urban natural resource managers increase vegetation structural complexity and woody debris to improve herpetofauna habitat when rehabilitating degraded riparian systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号