首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract

Let {Xn, n ? 1} be a sequence of negatively superadditive dependent (NSD, in short) random variables and {bni, 1 ? i ? n, n ? 1} be an array of real numbers. In this article, we study the strong law of large numbers for the weighted sums ∑ni = 1bniXi without identical distribution. We present some sufficient conditions to prove the strong law of large numbers. As an application, the Marcinkiewicz-Zygmund strong law of large numbers for NSD random variables is obtained. In addition, the complete convergence for the weighted sums of NSD random variables is established. Our results generalize and improve some corresponding ones for independent random variables and negatively associated random variables.  相似文献   

2.
We consider the GARCH-type model: S = σ2 Z, where σ2 and Z are independent random variables. The density of σ2 is unknown whereas the one of Z is known. We want to estimate the density of σ2 from n observations of S under some dependence assumption (the exponentially strongly mixing dependence). Adopting the wavelet methodology, we construct a nonadaptive estimator based on projections and an adaptive estimator based on the hard thresholding rule. Taking the mean integrated squared error over Besov balls, we prove that the adaptive one attains a sharp rate of convergence.  相似文献   

3.
Let {Xn, n ? 1} be a sequence of asymptotically almost negatively associated (AANA, for short) random variables which is stochastically dominated by a random variable X, and {dni, 1 ? i ? n, n ? 1} be a sequence of real function, which is defined on a compact set E. Under some suitable conditions, we investigate some convergence properties for weighted sums of AANA random variables, especially the Lp convergence and the complete convergence. As an application, the Marcinkiewicz–Zygmund-type strong law of large numbers for AANA random variables is obtained.  相似文献   

4.
In this article, we investigate the precise large deviations for a sum of independent but not identical distributed random variables. {X n , n ≥ 1} are independent non-negative random variables with distribution functions {F n , n ≥ 1}. We assume that the average of right tails of distribution functions F n is equivalent to some distribution function F with consistently varying tails. In applications, we apply our main results to a realistic example (Pareto-type distribution) and obtain a specific result.  相似文献   

5.
We consider a nonparametric regression model where m noise-perturbed functions f 1,…,f m are randomly observed. For a fixed ν∈{1,…,m}, we want to estimate f ν from the observations. To reach this goal, we develop an adaptive wavelet estimator based on a hard thresholding rule. Adopting the mean integrated squared error over Besov balls, we prove that it attains a sharp rate of convergence. Simulation results are reported to support our theoretical findings.  相似文献   

6.
Let {Xn} be a generalized autoregressive process of order ρ defined by Xnn(Xn-ρ,…,Xn-1)-ηm, where {φn} is a sequence of i.i.d. random maps taking values on H, and {ηn} is a sequence of i.i.d. random variables. Let H be a collection of Borel measurable functions on RP to R. By considering the associated Markov process, we obtain sufficient conditions for stationarity, (geometric) ergodicity of {Xn}.  相似文献   

7.
Let {X j , j ≥ 1} be a strictly stationary negatively or positively associated sequence of real valued random variables with unknown distribution function F(x). On the basis of the random variables {X j , j ≥ 1}, we propose a smooth recursive kernel-type estimate of F(x), and study asymptotic bias, quadratic-mean consistency and asymptotic normality of the recursive kernel-type estimator under suitable conditions.  相似文献   

8.
In this paper, we obtain some results for the asymptotic behavior of the tail probability of a random sum Sτ = ∑τk = 1Xk, where the summands Xk, k = 1, 2, …, are conditionally dependent random variables with a common subexponential distribution F, and the random number τ is a non negative integer-valued random variable, independent of {Xk: k ? 1}.  相似文献   

9.
In this article, let {X1, …, Xn} be a sequence of negatively associated random variables and {ani, 1 ? i ? n, n ? 1} be a triangular array of constants. Several almost sure convergence theorems for the weighted sums ∑ni = 1aniXi are established.  相似文献   

10.
A sequence of independent random variables {Zn:n≥ 1} with unknown probability distributions is considered and the problem of estimating their expectations {Mn+1: n≥ 1} is examined. The estimation of Mn+1 is based on a finite set {zk:1≤kn}, each zk being an observed value of Zk, 1 ≤kn, and also based on the assumption that {Mn:n≥ 1} follows an unknown trend of a specified form.  相似文献   

11.
Let X1, X2, … be a strictly stationary sequence of observations, and g be the joint density of (X1, …, Xd) for some fixed d ? 1. We consider kernel estimators of the density g. The asymptotic behaviour of the mean integrated squared error of the kernel estimators is obtained under an assumption of weak dependence between the observations.  相似文献   

12.
Let X1Y1,…, Yn be independent random variables. We characterize the distributions of X and Yj satisfying the equation {X+Y1++Yn}=dX, where {Z} denotes the fractional part of a random variable Z. In the case of full generality, either X is uniformly distributed on [0,1), or Yj has.a shifted lattice distribution and X is shift-invariant. We also give a characterization of shift-invariant distributions. Finally, we consider some special cases of this equation.  相似文献   

13.
14.
In this article, we study large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j, where {X1j, j ? 1} is a sequence of widely upper orthant dependent (WUOD) random variables with non identical distributions {F1j(x), j ? 1}, {X2j, j ? 1} is a sequence of independent identically distributed random variables, n1(t) and n2(t) are two positive integer-valued functions, and {Ni(t), t ? 0}2i = 1 with ENi(t) = λi(t) are two counting processes independent of {Xij, j ? 1}2i = 1. Under several assumptions, some results of precise large deviations for non random difference and random difference are derived, and some corresponding results are extended.  相似文献   

15.
Let {X t , t ∈ ?} be a sequence of iid random variables with an absolutely continuous distribution. Let a > 0 and c ∈ ? be some constants. We consider a sequence of 0-1 valued variables {ξ t , t ∈ ?} obtained by clipping an MA(1) process X t  ? aX t?1 at the level c, i.e., ξ t  = I[X t  ? aX t?1 < c] for all t ∈ ?. We deal with the estimation problem in this model. Properties of the estimators of the parameters a and c, the success probability p, and the 1-lag autocorrelation r 1 are investigated. A numerical study is provided as an illustration of the theoretical results.  相似文献   

16.
17.
We consider the specific transformation of a Wiener process {X(t), t ≥ 0} in the presence of an absorbing barrier a that results when this process is “time-locked” with respect to its first passage time T a through a criterion level a, and the evolution of X(t) is considered backwards (retrospectively) from T a . Formally, we study the random variables defined by Y(t) ≡ X(T a  ? t) and derive explicit results for their density and mean, and also for their asymptotic forms. We discuss how our results can aid interpretations of time series “response-locked” to their times of crossing a criterion level.  相似文献   

18.
19.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

20.
Let X(1)X(2)≤···≤X(n) be the order statistics from independent and identically distributed random variables {Xi, 1≤in} with a common absolutely continuous distribution function. In this work, first a new characterization of distributions based on order statistics is presented. Next, we review some conditional expectation properties of order statistics, which can be used to establish some equivalent forms for conditional expectations for sum of random variables based on order statistics. Using these equivalent forms, some known results can be extended immediately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号