首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent work on point processes includes studying posterior convergence rates of estimating a continuous intensity function. In this article, convergence rates for estimating the intensity function and change‐point are derived for the more general case of a piecewise continuous intensity function. We study the problem of estimating the intensity function of an inhomogeneous Poisson process with a change‐point using non‐parametric Bayesian methods. An Markov Chain Monte Carlo (MCMC) algorithm is proposed to obtain estimates of the intensity function and the change‐point which is illustrated using simulation studies and applications. The Canadian Journal of Statistics 47: 604–618; 2019 © 2019 Statistical Society of Canada  相似文献   

2.
In this paper, we consider a mixed compound Poisson process, that is, a random sum of independent and identically distributed (i.i.d.) random variables where the number of terms is a Poisson process with random intensity. We study nonparametric estimators of the jump density by specific deconvolution methods. Firstly, assuming that the random intensity has exponential distribution with unknown expectation, we propose two types of estimators based on the observation of an i.i.d. sample. Risks bounds and adaptive procedures are provided. Then, with no assumption on the distribution of the random intensity, we propose two non‐parametric estimators of the jump density based on the joint observation of the number of jumps and the random sum of jumps. Risks bounds are provided, leading to unusual rates for one of the two estimators. The methods are implemented and compared via simulations.  相似文献   

3.
Through an appeal to asymptotic Gaussian representations of certain empirical stochastic processes, the techniques of continuous regression are applied to derive estimates for underlying parametric probability laws. This asymptotic regression approach yields estimates for a wide range of statistical problems, including estimation based on the empirical quantile function, Poisson process intensity estimation, and parametric density estimation.  相似文献   

4.
This paper deals with a longitudinal semi‐parametric regression model in a generalised linear model setup for repeated count data collected from a large number of independent individuals. To accommodate the longitudinal correlations, we consider a dynamic model for repeated counts which has decaying auto‐correlations as the time lag increases between the repeated responses. The semi‐parametric regression function involved in the model contains a specified regression function in some suitable time‐dependent covariates and a non‐parametric function in some other time‐dependent covariates. As far as the inference is concerned, because the non‐parametric function is of secondary interest, we estimate this function consistently using the independence assumption‐based well‐known quasi‐likelihood approach. Next, the proposed longitudinal correlation structure and the estimate of the non‐parametric function are used to develop a semi‐parametric generalised quasi‐likelihood approach for consistent and efficient estimation of the regression effects in the parametric regression function. The finite sample performance of the proposed estimation approach is examined through an intensive simulation study based on both large and small samples. Both balanced and unbalanced cluster sizes are incorporated in the simulation study. The asymptotic performances of the estimators are given. The estimation methodology is illustrated by reanalysing the well‐known health care utilisation data consisting of counts of yearly visits to a physician by 180 individuals for four years and several important primary and secondary covariates.  相似文献   

5.
We present some lower bounds for the probability of zero for the class of count distributions having a log‐convex probability generating function, which includes compound and mixed‐Poisson distributions. These lower bounds allow the construction of new non‐parametric estimators of the number of unobserved zeros, which are useful for capture‐recapture models, or in areas like epidemiology and literary style analysis. Some of these bounds also lead to the well‐known Chao's and Turing's estimators. Several examples of application are analysed and discussed.  相似文献   

6.
In this article, a semiparametric time‐varying nonlinear vector autoregressive (NVAR) model is proposed to model nonlinear vector time series data. We consider a combination of parametric and nonparametric estimation approaches to estimate the NVAR function for both independent and dependent errors. We use the multivariate Taylor series expansion of the link function up to the second order which has a parametric framework as a representation of the nonlinear vector regression function. After the unknown parameters are estimated by the maximum likelihood estimation procedure, the obtained NVAR function is adjusted by a nonparametric diagonal matrix, where the proposed adjusted matrix is estimated by the nonparametric kernel estimator. The asymptotic consistency properties of the proposed estimators are established. Simulation studies are conducted to evaluate the performance of the proposed semiparametric method. A real data example on short‐run interest rates and long‐run interest rates of United States Treasury securities is analyzed to demonstrate the application of the proposed approach. The Canadian Journal of Statistics 47: 668–687; 2019 © 2019 Statistical Society of Canada  相似文献   

7.
In this paper, we consider non‐parametric copula inference under bivariate censoring. Based on an estimator of the joint cumulative distribution function, we define a discrete and two smooth estimators of the copula. The construction that we propose is valid for a large range of estimators of the distribution function and therefore for a large range of bivariate censoring frameworks. Under some conditions on the tails of the distributions, the weak convergence of the corresponding copula processes is obtained in l([0,1]2). We derive the uniform convergence rates of the copula density estimators deduced from our smooth copula estimators. Investigation of the practical behaviour of these estimators is performed through a simulation study and two real data applications, corresponding to different censoring settings. We use our non‐parametric estimators to define a goodness‐of‐fit procedure for parametric copula models. A new bootstrap scheme is proposed to compute the critical values.  相似文献   

8.
Abstract. This is probably the first paper which discusses likelihood inference for a random set using a germ‐grain model, where the individual grains are unobservable, edge effects occur and other complications appear. We consider the case where the grains form a disc process modelled by a marked point process, where the germs are the centres and the marks are the associated radii of the discs. We propose to use a recent parametric class of interacting disc process models, where the minimal sufficient statistic depends on various geometric properties of the random set, and the density is specified with respect to a given marked Poisson model (i.e. a Boolean model). We show how edge effects and other complications can be handled by considering a certain conditional likelihood. Our methodology is illustrated by analysing Peter Diggle's heather data set, where we discuss the results of simulation‐based maximum likelihood inference and the effect of specifying different reference Poisson models.  相似文献   

9.
In a series of papers, J. Garrido and Y. Lu have proposed and investigated a doubly periodic Poisson model, and then applied it to analyze hurricane data. The authors have suggested several parametric models for the underlying intensity function. In the present paper we construct and analyze a non-parametric estimator for the doubly periodic intensity function. Assuming that only a single realization of the process is available in a bounded window, we show that the estimator is consistent and asymptotically normal when the window expands indefinitely. In addition, we calculate the asymptotic bias and variance of the estimator, and in this way gain helpful information for optimizing the performance of the estimator.  相似文献   

10.
The non-homogeneous Poisson process (NHPP) model is a very important class of software reliability models and is widely used in software reliability engineering. NHPPs are characterized by their intensity functions. In the literature it is usually assumed that the functional forms of the intensity functions are known and only some parameters in intensity functions are unknown. The parametric statistical methods can then be applied to estimate or to test the unknown reliability models. However, in realistic situations it is often the case that the functional form of the failure intensity is not very well known or is completely unknown. In this case we have to use functional (non-parametric) estimation methods. The non-parametric techniques do not require any preliminary assumption on the software models and then can reduce the parameter modeling bias. The existing non-parametric methods in the statistical methods are usually not applicable to software reliability data. In this paper we construct some non-parametric methods to estimate the failure intensity function of the NHPP model, taking the particularities of the software failure data into consideration.  相似文献   

11.
This paper presents a non‐parametric method for estimating the conditional density associated to the jump rate of a piecewise‐deterministic Markov process. In our framework, the estimation needs only one observation of the process within a long time interval. Our method relies on a generalization of Aalen's multiplicative intensity model. We prove the uniform consistency of our estimator, under some reasonable assumptions related to the primitive characteristics of the process. A simulation study illustrates the behaviour of our estimator.  相似文献   

12.
Non‐parametric estimation and bootstrap techniques play an important role in many areas of Statistics. In the point process context, kernel intensity estimation has been limited to exploratory analysis because of its inconsistency, and some consistent alternatives have been proposed. Furthermore, most authors have considered kernel intensity estimators with scalar bandwidths, which can be very restrictive. This work focuses on a consistent kernel intensity estimator with unconstrained bandwidth matrix. We propose a smooth bootstrap for inhomogeneous spatial point processes. The consistency of the bootstrap mean integrated squared error (MISE) as an estimator of the MISE of the consistent kernel intensity estimator proves the validity of the resampling procedure. Finally, we propose a plug‐in bandwidth selection procedure based on the bootstrap MISE and compare its performance with several methods currently used through both as a simulation study and an application to the spatial pattern of wildfires registered in Galicia (Spain) during 2006.  相似文献   

13.
In the analysis of semi‐competing risks data interest lies in estimation and inference with respect to a so‐called non‐terminal event, the observation of which is subject to a terminal event. Multi‐state models are commonly used to analyse such data, with covariate effects on the transition/intensity functions typically specified via the Cox model and dependence between the non‐terminal and terminal events specified, in part, by a unit‐specific shared frailty term. To ensure identifiability, the frailties are typically assumed to arise from a parametric distribution, specifically a Gamma distribution with mean 1.0 and variance, say, σ2. When the frailty distribution is misspecified, however, the resulting estimator is not guaranteed to be consistent, with the extent of asymptotic bias depending on the discrepancy between the assumed and true frailty distributions. In this paper, we propose a novel class of transformation models for semi‐competing risks analysis that permit the non‐parametric specification of the frailty distribution. To ensure identifiability, the class restricts to parametric specifications of the transformation and the error distribution; the latter are flexible, however, and cover a broad range of possible specifications. We also derive the semi‐parametric efficient score under the complete data setting and propose a non‐parametric score imputation method to handle right censoring; consistency and asymptotic normality of the resulting estimators is derived and small‐sample operating characteristics evaluated via simulation. Although the proposed semi‐parametric transformation model and non‐parametric score imputation method are motivated by the analysis of semi‐competing risks data, they are broadly applicable to any analysis of multivariate time‐to‐event outcomes in which a unit‐specific shared frailty is used to account for correlation. Finally, the proposed model and estimation procedures are applied to a study of hospital readmission among patients diagnosed with pancreatic cancer.  相似文献   

14.
We consider conditions under which parametric estimates of the intensity of a spatial–temporal point process are consistent. Although the actual point process being estimated may not be Poisson, an estimate involving maximizing a function that corresponds exactly to the log-likelihood if the process is Poisson is consistent under certain simple conditions. A second estimate based on weighted least squares is also shown to be consistent under quite similar assumptions. The conditions for consistency are simple and easily verified, and examples are provided to illustrate the extent to which consistent estimation may be achieved. An important special case is when the point processes being estimated are in fact Poisson, though other important examples are explored as well.  相似文献   

15.
We establish the local asymptotic normality property for a class of ergodic parametric jump‐diffusion processes with state‐dependent intensity and known volatility function sampled at high frequency. We prove that the inference problem about the drift and jump parameters is adaptive with respect to parameters in the volatility function that can be consistently estimated.  相似文献   

16.
There exists a recent study where dynamic mixed‐effects regression models for count data have been extended to a semi‐parametric context. However, when one deals with other discrete data such as binary responses, the results based on count data models are not directly applicable. In this paper, we therefore begin with existing binary dynamic mixed models and generalise them to the semi‐parametric context. For inference, we use a new semi‐parametric conditional quasi‐likelihood (SCQL) approach for the estimation of the non‐parametric function involved in the semi‐parametric model, and a semi‐parametric generalised quasi‐likelihood (SGQL) approach for the estimation of the main regression, dynamic dependence and random effects variance parameters. A semi‐parametric maximum likelihood (SML) approach is also used as a comparison to the SGQL approach. The properties of the estimators are examined both asymptotically and empirically. More specifically, the consistency of the estimators is established and finite sample performances of the estimators are examined through an intensive simulation study.  相似文献   

17.
Abstract. A non‐parametric rank‐based test of exchangeability for bivariate extreme‐value copulas is first proposed. The two key ingredients of the suggested approach are the non‐parametric rank‐based estimators of the Pickands dependence function recently studied by Genest and Segers, and a multiplier technique for obtaining approximate p‐values for the derived statistics. The proposed approach is then extended to left‐tail decreasing dependence structures that are not necessarily extreme‐value copulas. Large‐scale Monte Carlo experiments are used to investigate the level and power of the various versions of the test and show that the proposed procedure can be substantially more powerful than tests of exchangeability derived directly from the empirical copula. The approach is illustrated on well‐known financial data.  相似文献   

18.
This paper presents a new parametric model for recurrent events, in which the time of each recurrence is associated to one or multiple latent causes and no information is provided about the responsible cause for the event. This model is characterized by a rate function and it is based on the Poisson-exponential distribution, namely the distribution of the maximum among a random number (truncated Poisson distributed) of exponential times. The time of each recurrence is then given by the maximum lifetime value among all latent causes. Inference is based on a maximum likelihood approach. A simulation study is performed in order to observe the frequentist properties of the estimation procedure for small and moderate sample sizes. We also investigated likelihood-based tests procedures. A real example from a gastroenterology study concerning small bowel motility during fasting state is used to illustrate the methodology. Finally, we apply the proposed model to a real data set and compare it with the classical Homogeneous Poisson model, which is a particular case.  相似文献   

19.
We propose a method for the analysis of a spatial point pattern, which is assumed to arise as a set of observations from a spatial nonhomogeneous Poisson process. The spatial point pattern is observed in a bounded region, which, for most applications, is taken to be a rectangle in the space where the process is defined. The method is based on modeling a density function, defined on this bounded region, that is directly related with the intensity function of the Poisson process. We develop a flexible nonparametric mixture model for this density using a bivariate Beta distribution for the mixture kernel and a Dirichlet process prior for the mixing distribution. Using posterior simulation methods, we obtain full inference for the intensity function and any other functional of the process that might be of interest. We discuss applications to problems where inference for clustering in the spatial point pattern is of interest. Moreover, we consider applications of the methodology to extreme value analysis problems. We illustrate the modeling approach with three previously published data sets. Two of the data sets are from forestry and consist of locations of trees. The third data set consists of extremes from the Dow Jones index over a period of 1303 days.  相似文献   

20.
Parametrically guided non‐parametric regression is an appealing method that can reduce the bias of a non‐parametric regression function estimator without increasing the variance. In this paper, we adapt this method to the censored data case using an unbiased transformation of the data and a local linear fit. The asymptotic properties of the proposed estimator are established, and its performance is evaluated via finite sample simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号