首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We give sufficient identifiability conditions for estimating mixing proportions in two‐component mixtures of skew normal distributions with one known component. We consider the univariate case and two multivariate extensions: a multivariate skew normal distribution (MSN) and the canonical fundamental skew normal distribution (CFUSN). The characteristic function of the CFUSN distribution is additionally derived.  相似文献   

2.
In this paper, we present an innovative method for constructing proper priors for the skewness (shape) parameter in the skew‐symmetric family of distributions. The proposed method is based on assigning a prior distribution on the perturbation effect of the shape parameter, which is quantified in terms of the total variation distance. We discuss strategies to translate prior beliefs about the asymmetry of the data into an informative prior distribution of this class. We show via a Monte Carlo simulation study that our non‐informative priors induce posterior distributions with good frequentist properties, similar to those of the Jeffreys prior. Our informative priors yield better results than their competitors from the literature. We also propose a scale‐invariant and location‐invariant prior structure for models with unknown location and scale parameters and provide sufficient conditions for the propriety of the corresponding posterior distribution. Illustrative examples are presented using simulated and real data.  相似文献   

3.
In statistical modelling, it is often of interest to evaluate non‐negative quantities that capture heterogeneity in the population such as variances, mixing proportions and dispersion parameters. In instances of covariate‐dependent heterogeneity, the implied homogeneity hypotheses are nonstandard and existing inferential techniques are not applicable. In this paper, we develop a quasi‐score test statistic to evaluate homogeneity against heterogeneity that varies with a covariate profile through a regression model. We establish the limiting null distribution of the proposed test as a functional of mixtures of chi‐square processes. The methodology does not require the full distribution of the data to be entirely specified. Instead, a general estimating function for a finite dimensional component of the model, that is, of interest is assumed but other characteristics of the population are left completely unspecified. We apply the methodology to evaluate the excess zero proportion in zero‐inflated models for count data. Our numerical simulations show that the proposed test can greatly improve efficiency over tests of homogeneity that neglect covariate information under the alternative hypothesis. An empirical application to dental caries indices demonstrates the importance and practical utility of the methodology in detecting excess zeros in the data.  相似文献   

4.
Abstract. We study the Jeffreys prior and its properties for the shape parameter of univariate skew‐t distributions with linear and nonlinear Student's t skewing functions. In both cases, we show that the resulting priors for the shape parameter are symmetric around zero and proper. Moreover, we propose a Student's t approximation of the Jeffreys prior that makes an objective Bayesian analysis easy to perform. We carry out a Monte Carlo simulation study that demonstrates an overall better behaviour of the maximum a posteriori estimator compared with the maximum likelihood estimator. We also compare the frequentist coverage of the credible intervals based on the Jeffreys prior and its approximation and show that they are similar. We further discuss location‐scale models under scale mixtures of skew‐normal distributions and show some conditions for the existence of the posterior distribution and its moments. Finally, we present three numerical examples to illustrate the implications of our results on inference for skew‐t distributions.  相似文献   

5.
Abstract. The entropy and mutual information index are important concepts developed by Shannon in the context of information theory. They have been widely studied in the case of the multivariate normal distribution. We first extend these tools to the full symmetric class of multivariate elliptical distributions and then to the more flexible families of multivariate skew‐elliptical distributions. We study in detail the cases of the multivariate skew‐normal and skew‐t distributions. We implement our findings to the application of the optimal design of an ozone monitoring station network in Santiago de Chile.  相似文献   

6.
Emrah Altun 《Statistics》2019,53(2):364-386
In this paper, we introduce a new distribution, called generalized Gudermannian (GG) distribution, and its skew extension for GARCH models in modelling daily Value-at-Risk (VaR). Basic structural properties of the proposed distribution are obtained including probability density and cumulative distribution functions, moments, and stochastic representation. The maximum likelihood method is used to estimate unknown parameters of the proposed model and finite sample performance of maximum likelihood estimates are evaluated by means of Monte-Carlo simulation study. The real data application on Nikkei 225 index is given to demonstrate the performance of GARCH model specified under skew extension of GG innovation distribution against normal, Student's-t, skew normal and generalized error and skew generalized error distributions in terms of the accuracy of VaR forecasts. The empirical results show that the GARCH model with GG innovation distribution produces the most accurate VaR forecasts for all confidence levels.  相似文献   

7.
We propose a new type of multivariate statistical model that permits non‐Gaussian distributions as well as the inclusion of conditional independence assumptions specified by a directed acyclic graph. These models feature a specific factorisation of the likelihood that is based on pair‐copula constructions and hence involves only univariate distributions and bivariate copulas, of which some may be conditional. We demonstrate maximum‐likelihood estimation of the parameters of such models and compare them to various competing models from the literature. A simulation study investigates the effects of model misspecification and highlights the need for non‐Gaussian conditional independence models. The proposed methods are finally applied to modeling financial return data. The Canadian Journal of Statistics 40: 86–109; 2012 © 2012 Statistical Society of Canada  相似文献   

8.
In this paper, an autoregressive time series model with conditional heteroscedasticity is considered, where both conditional mean and conditional variance function are modeled nonparametrically. Tests for the model assumption of independence of innovations from past time series values are suggested. Tests based on weighted L2‐distances of empirical characteristic functions are considered as well as a Cramér–von Mises‐type test. The asymptotic distributions under the null hypothesis of independence are derived, and the consistency against fixed alternatives is shown. A smooth autoregressive residual bootstrap procedure is suggested, and its performance is shown in a simulation study.  相似文献   

9.
Skew‐symmetric families of distributions such as the skew‐normal and skew‐t represent supersets of the normal and t distributions, and they exhibit richer classes of extremal behaviour. By defining a non‐stationary skew‐normal process, which allows the easy handling of positive definite, non‐stationary covariance functions, we derive a new family of max‐stable processes – the extremal skew‐t process. This process is a superset of non‐stationary processes that include the stationary extremal‐t processes. We provide the spectral representation and the resulting angular densities of the extremal skew‐t process and illustrate its practical implementation.  相似文献   

10.
A special case of the multivariate exponential power distribution is considered as a multivariate extension of the univariate symmetric Laplace distribution. In this paper, we focus on this multivariate symmetric Laplace distribution, and extend it to a multivariate skew distribution. We call this skew extension of the multivariate symmetric Laplace distribution the “multivariate skew Laplace (MSL) distribution” to distinguish between the asymmetric multivariate Laplace distribution proposed by Kozubowski and Podgórski (Comput Stat 15:531–540, 2000a) Kotz et al. (The Laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance, Chap. 6. Birkhäuser, Boston, 2001) and Kotz et al. (An asymmetric multivariate Laplace Distribution, Working paper, 2003). One of the advantages of (MSL) distribution is that it can handle both heavy tails and skewness and that it has a simple form compared to other multivariate skew distributions. Some fundamental properties of the multivariate skew Laplace distribution are discussed. A simple EM-based maximum likelihood estimation procedure to estimate the parameters of the multivariate skew Laplace distribution is given. Some examples are provided to demonstrate the modeling strength of the skew Laplace distribution.  相似文献   

11.
This work presents a new linear calibration model with replication by assuming that the error of the model follows a skew scale mixture of the normal distributions family, which is a class of asymmetric thick-tailed distributions that includes the skew normal distribution and symmetric distributions. In the literature, most calibration models assume that the errors are normally distributed. However, the normal distribution is not suitable when there are atypical observations and asymmetry. The estimation of the calibration model parameters are done numerically by the EM algorithm. A simulation study is carried out to verify the properties of the maximum likelihood estimators. This new approach is applied to a real dataset from a chemical analysis.  相似文献   

12.
In the analysis of semi‐competing risks data interest lies in estimation and inference with respect to a so‐called non‐terminal event, the observation of which is subject to a terminal event. Multi‐state models are commonly used to analyse such data, with covariate effects on the transition/intensity functions typically specified via the Cox model and dependence between the non‐terminal and terminal events specified, in part, by a unit‐specific shared frailty term. To ensure identifiability, the frailties are typically assumed to arise from a parametric distribution, specifically a Gamma distribution with mean 1.0 and variance, say, σ2. When the frailty distribution is misspecified, however, the resulting estimator is not guaranteed to be consistent, with the extent of asymptotic bias depending on the discrepancy between the assumed and true frailty distributions. In this paper, we propose a novel class of transformation models for semi‐competing risks analysis that permit the non‐parametric specification of the frailty distribution. To ensure identifiability, the class restricts to parametric specifications of the transformation and the error distribution; the latter are flexible, however, and cover a broad range of possible specifications. We also derive the semi‐parametric efficient score under the complete data setting and propose a non‐parametric score imputation method to handle right censoring; consistency and asymptotic normality of the resulting estimators is derived and small‐sample operating characteristics evaluated via simulation. Although the proposed semi‐parametric transformation model and non‐parametric score imputation method are motivated by the analysis of semi‐competing risks data, they are broadly applicable to any analysis of multivariate time‐to‐event outcomes in which a unit‐specific shared frailty is used to account for correlation. Finally, the proposed model and estimation procedures are applied to a study of hospital readmission among patients diagnosed with pancreatic cancer.  相似文献   

13.
A mixture measurement error model built upon skew normal distributions and normal distributions is developed to evaluate various impacts of measurement errors to parameter inferences in logistic regressions. Data generated from survey questionnaires are usually error contaminated. We consider two types of errors: person-specific bias and random errors. Person-specific bias is modelled using skew normal distribution, and the distribution of random errors is described by a normal distribution. Intensive simulations are conducted to evaluate the contribution of each component in the mixture to outcomes of interest. The proposed method is then applied to a questionnaire data set generated from a neural tube defect study. Simulation results and real data application indicate that ignoring measurement errors or misspecifying measurement error components can both produce misleading results, especially when measurement errors are actually skew distributed. The inferred parameters can be attenuated or inflated depending on how the measurement error components are specified. We expect the findings will self-explain the importance of adjusting measurement errors and thus benefit future data collection effort.  相似文献   

14.
Non‐random sampling is a source of bias in empirical research. It is common for the outcomes of interest (e.g. wage distribution) to be skewed in the source population. Sometimes, the outcomes are further subjected to sample selection, which is a type of missing data, resulting in partial observability. Thus, methods based on complete cases for skew data are inadequate for the analysis of such data and a general sample selection model is required. Heckman proposed a full maximum likelihood estimation method under the normality assumption for sample selection problems, and parametric and non‐parametric extensions have been proposed. We generalize Heckman selection model to allow for underlying skew‐normal distributions. Finite‐sample performance of the maximum likelihood estimator of the model is studied via simulation. Applications illustrate the strength of the model in capturing spurious skewness in bounded scores, and in modelling data where logarithm transformation could not mitigate the effect of inherent skewness in the outcome variable.  相似文献   

15.
A test of independence in symmetric bivariate stable distributions is constructed using the empirical characteristic function as a test statistic. A particular class of distributions considered in detail is X = U + V, Y=V+W where U, V, and W are mutually independent symmetric stable distributions with the same index.  相似文献   

16.
Many test statistics for classical simple goodness-of-fit hypothesis testing problems are distancemeasures between the distribution function of the null hypothesis distributipn and the empirical distribution function sometimes called EDF tests. If a composite parametric null hypothesis is considered in place of the simple null hypothesis, then a test statistic can be obtained from each EDF test by replacing the known distribution function of the simple problem by the Rao-Blackwell estimating distribution function. In this note we use known results to show that these Rao-Blackwell-EDF test statistics have distributions that do not depend upon parameter values, and hence that these tests are independent of a complete sufficient statistic for the parameters.  相似文献   

17.
In this paper tests of hypothesis are constructed for the family of skew normal distributions. The proposed tests utilize the fact that the moment generating function of the skew normal variable satisfies a simple differential equation. The empirical counterpart of this equation, involving the empirical moment generating function, yields simple consistent test statistics. Finite-sample results as well as results from real data are provided for the proposed procedures.  相似文献   

18.
A goodness‐of‐fit procedure is proposed for parametric families of copulas. The new test statistics are functionals of an empirical process based on the theoretical and sample versions of Spearman's dependence function. Conditions under which this empirical process converges weakly are seen to hold for many families including the Gaussian, Frank, and generalized Farlie–Gumbel–Morgenstern systems of distributions, as well as the models with singular components described by Durante [Durante ( 2007 ) Comptes Rendus Mathématique. Académie des Sciences. Paris, 344, 195–198]. Thanks to a parametric bootstrap method that allows to compute valid P‐values, it is shown empirically that tests based on Cramér–von Mises distances keep their size under the null hypothesis. Simulations attesting the power of the newly proposed tests, comparisons with competing procedures and complete analyses of real hydrological and financial data sets are presented. The Canadian Journal of Statistics 37: 80‐101; 2009 © 2009 Statistical Society of Canada  相似文献   

19.
The authors present an improved ranked set two‐sample Mann‐Whitney‐Wilcoxon test for a location shift between samples from two distributions F and G. They define a function that measures the amount of information provided by each observation from the two samples, given the actual joint ranking of all the units in a set. This information function is used as a guide for improving the Pitman efficacy of the Mann‐Whitney‐Wilcoxon test. When the underlying distributions are symmetric, observations at their mode(s) must be quantified in order to gain efficiency. Analogous results are provided for asymmetric distributions.  相似文献   

20.
The problem of Bayes and robust Bayes estimation for various bounded and/or symmetric loss functions in a normal model with conjugate and non-informative prior distributions is considered. The prior distribution is not fully specified and covers the conjugate family of priors. It is of interest to know that the Bayes and robust Bayes estimators for symmetric losses are the same as those for the standard square-error loss function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号